Cytotoxic and Apoptotic Effects of Echinomycin on Murine Leukemia Cells

  • Kim, Tae-Ue (Department of Medical Technology, College of Health Science, Yonsei University) ;
  • Yang, Se-Hwan (Department of Medical Technology, College of Health Science, Yonsei University) ;
  • Kim, Soo-Kie (College of Medicine, Yonsei University)
  • Received : 1996.04.20
  • Published : 1996.11.30

Abstract

A number of anticancer-chemotherapeutic agents induce cell death through the process of apoptosis. Effects of echinomycin, an anticancer agent on cancer progression, were investigated in P388 murine leukemia cells. First, according to the results of cytotoxicity measurement. $IC_{50}$ of echinomycin was 1.12 nM, a relatively lower value than the other examined anticancer agents, mitomycin-C and etoposide Second, the DNA fragmentation assay for echinomycin-treated cells exhibited that echinomycin was able to induce apoptosis in a shorter period of time and with a lower dose than mitomycin-C or etoposide. The data of DNA fragmentation were quite comparable to those of cytotoxicity measurement. Finally we showed that mitogen-activated protein (MAP) kinase, a key protein in cell mitosis, was translocated into the nucleus from the cytosol after treatment with echinomycin. These findings suggest that a MAP kinase-related process may be involved in apoptosis induced by echinomycin.

Keywords

References

  1. Science v.256 Cerretti, O.P.;Kozlosky, C.J.;Mosley, B.;Nelson, N.;Van Ness, K.;Greenstreet, T.A.;March, C.J.;Kronheim, S.R.;Druck, T.;Cannizzaro, L.A. https://doi.org/10.1126/science.1373520
  2. J. Mol. Cell. Biol. v.12 Chen, R.H.;Samecki, C.;Blenis, J. https://doi.org/10.1128/MCB.12.3.915
  3. J. Exp. Med. v.183 Corbeil, J.;Tremblay, M.;Richman, D.D. https://doi.org/10.1084/jem.183.1.39
  4. Proc. Natl. Acad SCi. USA v.80 Duke, R.C.;Cohen, J.J.;Chervenak, R.
  5. Cell v.75 Fernandez-Alnemri, T.;Litwack, G.;Hartwieg, E.A.;Yuan, J. https://doi.org/10.1016/0092-8674(93)90486-A
  6. Cancer Res. v.53 Kaufmann, S.H.;Desnoters, S.;Ottaviano, Y.;Davidson, N.E.;Poirier, G.G.
  7. Nucleic Acids Res. v.18 Keith, R.F.;Edwina, K. https://doi.org/10.1093/nar/18.8.1957
  8. Biochem. Biophys. Res. Commun. v.185 Kumar, S.;Tomooka, Y.;Noda, M. https://doi.org/10.1016/0006-291X(92)91747-E
  9. Science v.265 Mansour, S.J.;Matter, W.T.;Hermann, A.S.;Candia, J.M.;Pong, S.;Fukkasawa, K.;Vande Woude, G.F.;Ahn, N.G. https://doi.org/10.1126/science.8052857
  10. J. Antibiot. (Tokyo) v.28 Martin, D.G.;Mizsak, S.A.;Biles, C.;Stewart, J.C.;Baczynskyj, L.;Meulman, P.A. https://doi.org/10.7164/antibiotics.28.332
  11. J. Biol. Chem. v.264 McConkey, D.J.;Hartzell, P.;Jondal, M.;Orrenius, S.
  12. Immunol. Today v.11 McConkey, D.J.;Orrenius, S.;Jondal, M. https://doi.org/10.1016/0167-5699(90)90048-E
  13. Nature v.356 Raff, M.C. https://doi.org/10.1038/356379a0
  14. Science v.262 Raff, M.C.;Barres, B.A.;Burne, J.F.;Coles, H.S.;Ishizaki, Y.;Jacobson, M.D. https://doi.org/10.1126/science.8235590
  15. Cancer Genet. Cytogenet. v.75 Rey, J.P.;Scott, R.;Muller, H. https://doi.org/10.1016/0165-4608(94)90218-6
  16. Biol. Rev. v.56 Russel, J.H. https://doi.org/10.1111/j.1469-185X.1981.tb00346.x
  17. Cancer Res. v.49 Scott, H.K.
  18. Cancer Chemother. Pharmacol. v.34 Scott, W.;Laura, T.;Lorraine, C.;Joseph, A.S.;Edward, S.G.;Alla, R.;Ronald, K.;Peter, H.W. https://doi.org/10.1007/BF00685088
  19. J. Exp. Med. v.176 Shi, L.;Karn, C.M.;Powers, J.C.;Aebersold, R.;Greenberg, A.H. https://doi.org/10.1084/jem.176.6.1521
  20. Nature v.337 Smith, C.A.;Williams, G.T.;Kingston, R.;Jenkinson, F.J.;Owen, J.T. https://doi.org/10.1038/337181a0
  21. EMBO J. v.13 Subimoto, A.;Friesen, P.D.;Rothman, J.H.
  22. Science v.267 Thompson, C.B. https://doi.org/10.1126/science.7878464
  23. Nature v.252 Waring, M.J.;Wakelin, L.P.G. https://doi.org/10.1038/252653a0
  24. Am. J. Pathol. v.109 Wyllie, A.H.;Morris, R.G.
  25. Science v.270 Xia, Z.;Dickenes, M.;Raingeaud, J.;Davis, R.J.;Greenberg, M.E. https://doi.org/10.1126/science.270.5240.1326