Intramolecular Hydrogen Bonds in Proteinase Inhibitor Protein, A Molecular Dynamics Simulation Study

  • Received : 1996.04.17
  • Published : 1996.07.31

Abstract

Ovomucoid third domain is a serine proteinase inhibitor protein which consists of 56 amino acid residues. A fifty picosecond molecular dynamics (MD) simulation was carried out for ovomucoid third domain protein with 5 $\AA$ layer of water molecules. A comparison of main chain atoms in the MD averaged structure with the crystal structure showed that most of the backbone structures are maintained during the simulation. Investigation of the intramolecular hydrogen bondings indicated that most of the interactions between main chain atoms were conserved, whereas those between side chains were reorganized for the period of the simulation. Especially, the side chain interactions around the scissile bond of reactive site P1 (Met18) were found to be more extensive for the MD structures. During the simulation, hydrogen bonds were maintained between the side chains of Glu19 and Arg21 as well as those of Thr17 and Glu19. Extensive side chain interactions observed in the MD structures may shed light on the question of why protein proteinase inhibitors are strong inhibitors for proteinases rather than good substrates.

Keywords

References

  1. J. Mol. Biol. v.220 Ardelt, W.;Laskowksi, M. Jr. https://doi.org/10.1016/0022-2836(91)90370-L
  2. Eur. J. Biochem. v.147 Bode, W.;Epp, O.;Huber, R.;Laskowksi, M. Jr.;Ardelt, W. https://doi.org/10.1111/j.1432-1033.1985.tb08762.x
  3. Biochemistry v.21 ?Empie, M W.;Laskowski, M. Jr.
  4. Practical Methods of Optimization, Vol. 1. Fletcher, R.
  5. J. Mol. Biol. v.195 Fujinaga, M.;Sielecki, A.R.;Read, R.J.;Ardelt, W.;Laskowski, M. Jr.;James, M.N.G. https://doi.org/10.1016/0022-2836(87)90659-0
  6. J. Am. Chem. Soc. v.101 Hagler, A.T.;Stern, P.S.;Lifson, S.;Ariels, S. https://doi.org/10.1021/ja00498a006
  7. Prot. Sci. v.4 Huang, K.;Lu, W.;Anderson, S.;Laskowski, M. Jr.;James, M.N.G. https://doi.org/10.1002/pro.5560041004
  8. Biochemistry v.27 Kitson, D.H.;Hagler, A.T. https://doi.org/10.1021/bi00414a045
  9. J. Mol. Biol. v.242 Krezel, A.M.;Darba, P.;Robertson, A.D.;Fejzo, J.;Macura, S.;Markley, J. https://doi.org/10.1006/jmbi.1994.1573
  10. Annu. Rev. Biochem. v.49 Laskowski, M. Jr.;Kato, I. https://doi.org/10.1146/annurev.bi.49.070180.003113
  11. Biochemistry v.26 Laskowski, M. Jr.;Kato, I.;Ardelt, W.;Cook, J.;Denton, A.;Empie, M.;Kohr, W.;Park, S.J.;Parks, K.;Shatzley, B.;Schoenberger, M.;Tashiro, M.;Vichot, G.;Watley, H.E.;Wieczorak, A.;Wieczorak, M. https://doi.org/10.1021/bi00375a028
  12. J. Mol. Biol. v.220 Musil, D.;Bode, W.;Huber, R.;Laskowski, M. Jr.;Lin, T.Y.;Ardelt, W. https://doi.org/10.1016/0022-2836(91)90114-L
  13. J. Mol. Biol. v.158 Papamokos, E.;Weber, E.;Bode, W.;Huber, R.;Empie, M.W.;Kato, I.;Laskowski, M. Jr. https://doi.org/10.1016/0022-2836(82)90212-1
  14. Park, S.J.
  15. Biochemistry v.22 Read, R.J.;Fujinaga, M.;Sielecki, A.R.;James, M.N.G. https://doi.org/10.1021/bi00288a012
  16. Biochemistry v.27 Robertson, A.;Westler, W.M.;Markley, J.L. https://doi.org/10.1021/bi00407a039
  17. Biochem. Biophys. Res. Comm. v.27 Schechter, I.;Berger, A. https://doi.org/10.1016/S0006-291X(67)80055-X
  18. J. Mol. Biol. v.149 Weber, E.;Papamokos, E.;Bode, W.;Huber, R.;Kato, I.;Laskowski, M. Jr. https://doi.org/10.1016/0022-2836(81)90263-1