Studies on the Purification and Partial Characterization of Cysteinesulfinic Acid Decarboxylase from Porcine Liver

  • Lee, Hong-Mie (Department of Animal Science and Biochemistry, North Carolina State University) ;
  • Jones, Evan E. (Department of Animal Science and Biochemistry, North Carolina State University)
  • Received : 1996.03.05
  • Published : 1996.07.31

Abstract

Porcine liver cysteinesulfinic acid decarboxylase was purified approximately 460-fold by means of ammonium sulfate fractionation and sequential column chromatographic separation with Sephadex G-100, DEAE-cellulose and hydroxylapatite. The enzyme has a flat pH profile with maximum activity occurring between pH 6.0 and 7.6. Pyridoxal 5'-phosphate must be present in all buffers used for purification procedures in order to stabilize the enzyme. Addition of sulfhydryl reagents such as 2-mercaptoethanol are also necessary to maintain maximum enzyme activity throughout purification. The absorption spectrum shows that cysteinesulfinic acid decarboxylase is a pyridoxal 5' -phosphate-containing protein. The major absorption is at 280 nm with two smaller absorption regions, one at 425 nm which is ascribed to a Schiffs base between pyridoxal phosphate and protein, and another at 325 nm which is thought to be due to the interaction of 2-mercaptoethanol with the Schiffs base. A number of divalent cations tested did not affect enzyme activity with the exception of mercury, copper, and zinc which are inhibitory. The partially purified enzyme has an apparent $K_m$ of 0.94 mM for cysteinesulfinate. Cysteic acid is a competitive inhibitor of the enzyme with a $K_i$ of 1.32 mM. The molecular weight of the enzyme was estimated to be about 79,600 by using Sephadex G-200 column chromatography.

Keywords

References

  1. Biochem. J. v.91 Andrews, P. https://doi.org/10.1042/bj0910222
  2. J. Physiol. (London) v.126 Blaschko, H.;Hope, O.B. https://doi.org/10.1113/jphysiol.1954.sp005191
  3. Nutr. Res. v.8 Chapman, G.E.;Greenwood, C.E. https://doi.org/10.1016/S0271-5317(88)80135-0
  4. J. Nutr. v.112 Daniels, K.M.;Stipanuk, M.H.
  5. Comp. Biochem. Physiol. v.81B De La Rosa, J.;Stipanuk, M.H.
  6. Ann. Pharm. v.27 Demarcay, H. https://doi.org/10.1002/jlac.18380270304
  7. Biochem. Biophys. Acta. v.19 Davison, A.H. https://doi.org/10.1016/0006-3002(56)90386-9
  8. Am. J. Physiol. v.230 Garlick, P.J.;Burk, T.L.;Swick, R.W.
  9. Biochem. Biophys. Acta. v.384 Guion-Rain, M.C.;Portemer, C.;Chatagner, F.
  10. Science v.188 Hayes, K.C.;Carey, R.E.;Schmidt, S.Y. https://doi.org/10.1126/science.1138364
  11. J. Nutr. v.110 Hayes, K.C.;Stephen, Z.F.;Sturman, J.A. https://doi.org/10.1093/jn/110.10.2058
  12. Modern Nutriton in Health and Disease Hayes, K.C.;Shils, M.E.(ed.);Young, V.R.(ed.)
  13. Methods Enzymol. v.22 Himmelhoch, S.R.
  14. Biochem. Biophys. Acta v.85 Jacobsen, J.G.;Thomas, L.L.;Smith, L.H. Jr.
  15. Physiol. Rev. v.48 Jacobsen, J.G.;Smith, L.H. https://doi.org/10.1152/physrev.1968.48.2.424
  16. Methods Enzymol. v.3 Layne, E.
  17. Biochim. Biophys. Acta. v.250 Lin, Y.C.;Demeio, R.H.;Metrione, R.M. https://doi.org/10.1016/0005-2744(71)90256-7
  18. J. Neurochem. v.54 Remy, A.;Henry, S.;Tappaz, M. https://doi.org/10.1111/j.1471-4159.1990.tb02332.x
  19. J. Biol. Chem. v.242 Saier, M.H.;Jenkins, W.T.
  20. Nutr. Res. v.11 Stephen, L.L.;Chavez, E.R.;Sarwar, G. https://doi.org/10.1016/S0271-5317(05)80119-8
  21. Nutr. Res. v.1 no.Special Sturman, J.A.
  22. International Symposium: Swine in Biomedical Research Tumbleson, M.;Schook, L.
  23. J. Biol. Chem. v.262 Weinstein, C.L.;Griffith, O.W.
  24. Comp. Biochem. Physiol. v.82B Worden, J.A.;Stipanuk, M.H.
  25. Proc. Natl. Acad. Sci. USA v.79 Wu, J.Y. https://doi.org/10.1073/pnas.79.14.4270
  26. Clin. Chim. Acta. v.6 Zak, B.;Cohen, J. https://doi.org/10.1016/0009-8981(61)90112-7