Analysis of the Stability of HLA-A2 Molecules Expressed on the Cell Surface

  • Received : 1995.11.22
  • Published : 1996.07.31

Abstract

Association of antigenic peptide with class I MHC is believed to be crucial for maintaining stable conformation of class I molecules. T2 cells that are defective in TAP gene function mainly express class I molecules with an unstable conformation due to little or no association with antigenic peptides, whereas T1 cells that are normal in TAP gene function mainly express the stable form of class I molecules. In this work, attempts were made to determine the molecular stability of stable and unstable class I molecules. Dissociation of HLA-A2 molecules on T1 and T2 cells was monitored by flow cytometry using anti-HLA-A2 antibody after the cells were treated with brefeldin A to shut down the transport of newly-assembled HLA-A2. Estimated dissociation rate constants for the stable and unstable forms of HLA-A2 were 0.076 $h^{-1}$ and 0.66 $h^{-1}$, respectively. It appeared that both T1 and T2 cells express stable and unstable class I complex, but with different ratios of the two forms. Furthermore, $interferon-{\gamma}$ treatment of T1 cells appeared to induce the expression of both the stable and unstable class I molecules. These results demonstrate that class I MHC molecules can be divided into two groups in terms of structural stability and that they exist on the cell surface in both forms in a certain ratio.

Keywords

References

  1. J. Exp. Med. v.174 Anderson, K.;Cresswell, P.;Gammon, M.;Hermes, J.;Williamson, A.;Zweerink, H. https://doi.org/10.1084/jem.174.2.489
  2. J. Exp. Med. v.176 Baas, E.J.;van Santen, H.M.;Kleijmeer, M.J.;Geuze, H.J.;Peters, P.J.;Ploegh, H.L. https://doi.org/10.1084/jem.176.1.147
  3. Nature v.345 Cerundolo, V.;Alexander, J.;Anderson, K.;Lamb, C.;Cresswell, P.;McMichael, A.;Gotch, F.;Townsend, A. https://doi.org/10.1038/345449a0
  4. Nature v.337 Chen, B.P.;Parham, P. https://doi.org/10.1038/337743a0
  5. Nature v.352 Christinck, E.R.;Luscher, M.A.;Barber, B.H.;Williams, D.B. https://doi.org/10.1038/352067a0
  6. Hum. Immunol. v.11 De Mars, R.;Chang, C.C.;Shaw, S.;Reithauer, P.J.;Sondel, P.M. https://doi.org/10.1016/0198-8859(84)90047-8
  7. Nature v.354 Elizabeth, K.B.;Jaffe, L.;Ribaudo, K.R.;Otten, G.R.;Germain, R.N.;Robertson, E.J. https://doi.org/10.1038/354235a0
  8. J. Exp. Med. v.175 Esquivel, F.;Yewdell, J.;Bennink, J. https://doi.org/10.1084/jem.175.1.163
  9. J. Immunol. v.40 Giacomini, P.;Tecce, R.;Gambari, R.;Sacchi, A.;Fischer, P.B.;Natali, G. P.
  10. Science v.248 Hoskin, N.A.;Bevan, M.J. https://doi.org/10.1126/science.2326647
  11. J. Exp. Med. v.175 Hoskin, N.A.;Bevan, M.J. https://doi.org/10.1084/jem.175.3.719
  12. Nature v.355 Kelly, A.;Powis, S.H.;Kerr, L.A.;Mockridge, I.;Elliott, T.;Bastin, J.;Uchanska-Ziegler, A.;Trowsdale, J.;Townsend, A. https://doi.org/10.1038/355641a0
  13. EMBO J. v.8 Klar, D.;Hamerling, G.J.
  14. J. Immunol. v.148 Luescher, I.F.;Loez, J.A.;Malissen, B.;Cerottini, J.C.
  15. J. Exp. Med. v.174 Madrigal, J.A.;Belich, M.P.;Benjamin, R.J.;Little, A.M.;Heldebrand, W.H.;Mann, D.L.;Parham, P. https://doi.org/10.1084/jem.174.5.1085
  16. J. Biol. Chem. v.261 Misumi, Y.;Loichiro, K.;Takatsuki, A.;Tamura, G.;Ikehara, Y.
  17. Eur. J. Immunol. v.22 Neefies, J.J.;Smit, L.;Gehrmann, M.;Ploegh, H.L. https://doi.org/10.1002/eji.1830220639
  18. Nature v.339 Nuchtern, J.G.;Bonifacino, J.S.;Biddison, W.E.;Klausner, R.D. https://doi.org/10.1038/339223a0
  19. Nature v.364 Ou, W.J.;Camerun, P.H.;Thomas, D.Y.;Bergeron, J.J.M. https://doi.org/10.1038/364771a0
  20. J. Immunol. v.149 Parker, K.C.;DiBrino, M.;Hull, L.;Coligan, J.E.
  21. Nature v.357 Powis, S.J.;Deverson, E.V.;Coadwell, W.J.;Ciruela, A.;Huskinsson, N.S.;Smith, H.;Butcher, G.W.;Howard, J.C. https://doi.org/10.1038/357211a0
  22. Cell v.65 Rock, K.L.;Gamble, S.;Rothstein, L.C.;Benacerraf, B. https://doi.org/10.1016/0092-8674(91)90093-E
  23. Cell v.74 Ruppert, J.;Sidney, J.;Ceis, E.;Kubo, R.T.;Grey, H.M.;Sette, A. https://doi.org/10.1016/0092-8674(93)90472-3
  24. Immunogenetics v.21 Salter, R.D.;Howell, D.N.;Cresswell, P.
  25. EMBO J. v.5 Salter, R.D.;Cresswell, P.
  26. Eur. J. Immunol. v.22 Sibille, C.;Gould, K.;Homerling, G.;Townsend, A. https://doi.org/10.1002/eji.1830220222
  27. Nature v.351 Spies, R.D.;De Mars, R. https://doi.org/10.1038/351323a0
  28. Nature v.340 Townsend, A.;Ohlen, C.;Bastin, J.;Ljunggren, H.G.;Faster, L.;Karre, K.
  29. Cell v.62 Townsend, A.;Elliott, T.;Cerundolo, V.;Foster, L.;Barber, B.;Tse, A. https://doi.org/10.1016/0092-8674(90)90366-M
  30. Proc. Natl. Acad. Sci. USA v.88 Tsomides, J.J.;Walker, B.D.;Eisen, H.N. https://doi.org/10.1073/pnas.88.24.11276
  31. Mol. Immunol. v.30 Vegh, Z.;Wang, P.;Vanky, F.;Klein, L. https://doi.org/10.1016/0161-5890(93)90008-Y
  32. J. Immunol. v.142 Williams, D.B.;Barber, B.J.;Flavell, R.A.;Allen, H.
  33. Eur. J. Immunol. v.23 Zhou, X.;Glas, R.;Liu, T.;Ljunggren, H.G.;Jondal, M. https://doi.org/10.1002/eji.1830230811