Carbohydrate Structure of N- and O-linked Oligosaccharides of Human Erythropoietin Expressed in Chinese Hamster Ovary Cells

  • Received : 1996.03.12
  • Published : 1996.05.31

Abstract

A recombinant human erythropoietin (EPO), expressed in Chinese hamster ovary (CHO) cells, is glycosylated at Asn 24, Asn 38, Asn 83, and Ser 126. After release of the N-linked carbohydrate chains by $peptide-N^{4}-(N-acetyl-{\beta}-glucosaminyl)$ asparagine amidase F, the oligosaccharides were analyzed by FACE (Fluorophore-Assisted Carbohydrate Electrophoresis). The O-linked carbohydrate chain was separated by hydrazine, and analyzed by FACE. The monosacccharide composition of recombinant EPO showed man nose, fucose, galactose, N-acetylglucosamine, N-acetylneuraminic acid, and a trace of N-acetylgalactosamine, which are typical monosaccharides in the glycoproteins from the CHO cell. Sequences of N-linked and O-linked oligosaccharides were determined. The structure and composition of oligosaccharides attached to recombinant human EPO, expressed in the CHO cell, are identical to the reported oligosaccharide structure in human EPO isolated from urine.

Keywords

References

  1. Arch. Biochem. Biophys. v.80 Bassam, B.J.;Caetuno-Annolkes, G.;Gresshoff, P.M.
  2. Eur. J. Biochem. v.212 Bergwerff, A.A.;Oostrum, J.;Asselbergs, F.;Burgi, R.;Hokke, C.H.;Kamerling, J.P.;Vliegenthart, F.G. https://doi.org/10.1111/j.1432-1033.1993.tb17702.x
  3. J. Biol. Chem. v.268 Boissel, J.P.;Lee, W.R.;Presnell, S.R.;Cohen, F.E.;Bunn, H.F.
  4. Endocrinology v.116 Dordal, M.S.;Wang, F.F.;Goldwasser, E. https://doi.org/10.1210/endo-116-6-2293
  5. T. I. B. Tech. v.10 Geisow, M.J.
  6. Eur. J. Biochem. v.228 Hokke, C.H.;Bergwerff, A.A.;Van Dedem, G.W.K.;Kamerling, J.P.;Vliegenthart, F.G. https://doi.org/10.1111/j.1432-1033.1995.tb20350.x
  7. Electrophoresis v.12 Jackson, P.;Williams, G.R. https://doi.org/10.1002/elps.1150120118
  8. J. Biol. Chem. v.262 Lustbader, J.W.;Birken, S.;Pollak, S.;Levinson, L.;Bernsteine, E.;Hsiung, N.;Canfield, R.E.
  9. J. Biol. Chem. v.252 Miyake, T.;Kung, C.;Goldwasser, E.
  10. J. Biol. Chem. v.250 Moyle, W.R.;Bahl, O.P.;Marz, L.
  11. Proc. Natl. Acad. Sci. USA v.83 Powell, J.S.;Berkner, K.L.;Lebo, R.V.;Adamson, J.W. https://doi.org/10.1073/pnas.83.17.6465
  12. J. Biol. Chem. v.262 Recny, M.A.;Scoble, H.;Kim, Y.
  13. J. Biol. Chem. v.262 Sasaki, H.;Bothner, B.;Dell, A.;Fukuda, M.
  14. J. Chromatography v.646 Schaumann, C.;Oesch, F.;Unger, K.K.;Wieser, R.J. https://doi.org/10.1016/S0021-9673(99)87024-1
  15. J. Chromatography v.720 Starr, C.M.;Masada, R.I.;Hague, C.;Skop, E.;Klock, J.C. https://doi.org/10.1016/0021-9673(95)00749-0
  16. J. Biol. Chem. v.257 Strickland, T.W.;Puett, D.
  17. J. Biol. Chem. v.262 Sytkowski, A.T.;Donahue, K.A.
  18. Proc. Natl. Acad. Sci. USA v.86 Takeuchi, M.;Inoue, N.;Strickland, T.W.;Kubota, M.;Wada, M.;Shimizu, R.;Hoshi, S.;Kozutsumi, H.;Takasaki, S.;Kobata, A. https://doi.org/10.1073/pnas.86.20.7819