A CHARACTERIZATION OF MCSHANE INTEGRABILITY

Chun-Kee Park

ABSTRACT. In this paper we prove that for functions from [0,1] into a totally ordered AL-space, Mcshane integrability and absolute Mcshane integrability are equivalent.

1. Introduction

In 1990 Gordon[4] introduced the Mcshane integral of Banach-valued functions. This integral is a generalized Riemann integral of functions which have values in a Banach space. For real-valued functions the Mcshane integral and the Lebesgue integral are equivalent. Gordon[4] and Fremlin and Mendoza[2] have developed the properties of this integral. A Bochner integrable function is Mcshane integrable [4], and a Mcshane integrable function is Pettis integrable [2]. Many authors have studied the Bochner integral and the Pettis integral ([1],[3],[5],[6]).

In this paper we prove that for functions from [0,1] into a totally ordered AL-space, Mcshane integrability and absolute Mcshane integrability are equivalent.

2. Preliminaries

Unless otherwise stated, we always assume that X is a real Banach space with dual X^* and $([0,1], \Sigma, \mu)$ is the Lebesgue measure space.

Gorden [4] introduced the Mcshane integral of Banach-valued functions.

Received April 8, 1996.

1991 Mathematics Subject Classification: 28B05.

Key words and phrases: Mcshane integrability, absolute Mcshane integrability.

DEFINITION 2.1. A Mcshane partition of [0,1] is a finite collection $\mathcal{P} = \{([a_i,b_i],t_i): 1 \leq i \leq n\}$ such that $\{[a_i,b_i]: 1 \leq i \leq n\}$ is a non-overlapping family of subintervals of [0,1] covering [0,1] and $t_i \in [0,1]$ for each $i \leq n$. A gauge on [0,1] is a function $\delta: [0,1] \to (0,\infty)$. A Mcshane partition $\mathcal{P} = \{([a_i,b_i],t_i): 1 \leq i \leq n\}$ is subordinate to a gauge δ if $[a_i,b_i] \subset (t_i-\delta(t_i),t_i+\delta(t_i))$ for every $i \leq n$. If $f: [0,1] \to X$ and if $\mathcal{P} = \{([a_i,b_i],t_i): 1 \leq i \leq n\}$ is a Mcshane partition of [0,1], we will denote $f(\mathcal{P})$ for $\sum_{i=1}^n f(t_i)(b_i-a_i)$. A function $f: [0,1] \to X$ is Mcshane integrable on [0,1], with Mcshane integral ω , if for every $\varepsilon > 0$ there exists a gauge $\delta: [0,1] \to (0,\infty)$ such that $\|\omega - f(\mathcal{P})\| < \varepsilon$ for every Mcshane partition $\mathcal{P} = \{([a_i,b_i],t_i): 1 \leq i \leq n\}$ of [0,1] subordinate to δ .

Gorden [4] obtained the following theorem which is useful to prove our result.

THEOREM 2.2 [4]. The function $f:[0,1] \to X$ is Mcshane integrable on [0,1] if and only if for each $\varepsilon > 0$ there exists a gauge δ on [0,1] such that $||f(\mathcal{P}_1) - f(\mathcal{P}_2)|| < \varepsilon$ whenever \mathcal{P}_1 and \mathcal{P}_2 are Mcshane partitions of [0,1] subordinate to δ .

DEFINITION 2.3. A function $f:[0,1]\to X$ is absolutely Mcshane integrable on [0,1] if for each $\varepsilon>0$ there exists a gauge δ on [0,1] such that

$$\sum_{i=1}^{k} \sum_{j=1}^{h} \|f(t_i') - f(t_j'')\| \mu([a_i', b_i'] \cap [a_j'', b_j'']) < \varepsilon$$

whenever $\mathcal{P}' = \{([a_i',b_i'],t_i'): 1 \leq i \leq k\}$ and $\mathcal{P}'' = \{([a_j'',b_j''],t_j''): 1 \leq j \leq h\}$ are Mcshane partitions of [0,1] subordinate to δ .

3. Main Result

In this section, we give a characterization of Mcshane integrablility in terms of absolute Mcshane integrability.

LEMMA 3.1. $f:[0,1] \to X$ is Mcshane integrable if and only if for each $\varepsilon > 0$ there exists a gauge δ on [0,1] such that

$$\|\sum_{i=1}^k \sum_{j=1}^h [f(t_i') - f(t_j'')] \mu([a_i', b_i'] \cap [a_j'', b_j''])\| < \varepsilon$$

whenever $\mathcal{P}' = \{([a_i',b_i'],t_i'): 1 \leq i \leq k\}$ and $\mathcal{P}'' = \{([a_j'',b_j''],t_j''): 1 \leq j \leq h\}$ are Mcshane partitions of [0,1] subordinate to δ .

Proof. Let $\mathcal{P}' = \{([a_i', b_i'], t_i') : 1 \le i \le k\}$ and $\mathcal{P}'' = \{([a_j'', b_j''], t_j'') : 1 \le i \le k\}$ $1 \leq j \leq h$ be any Mcshane partitions of [0, 1]. Then

$$f(\mathcal{P}') = \sum_{i=1}^{k} f(t'_i)(b'_i - a'_i)$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{h} f(t'_i) \mu([a'_i, b'_i] \cap [a''_j, b''_j])$$

and

$$f(\mathcal{P}'') = \sum_{j=1}^{h} f(t_j'')(b_j'' - a_j'')$$
$$= \sum_{i=1}^{k} \sum_{j=1}^{h} f(t_j'') \mu([a_i', b_i'] \cap [a_j'', b_j''])$$

Hence $||f(\mathcal{P}') - f(\mathcal{P}'')|| = ||\sum_{i=1}^k \sum_{j=1}^h [f(t_i') - f(t_j'')] \mu([a_i', b_i'] \cap [a_j'', b_j''])||$ Therefore by Theorem 2.2, $f: [0, 1] \to X$ is Mcshane integrable if and only if for each $\varepsilon > 0$ there exists a gauge δ on [0,1]such that $\|\sum_{i=1}^{k}\sum_{j=1}^{h}[f(t'_i)-f(t''_j)]\mu([a'_i,b'_i]\cap[a''_j,b''_j])\|<\varepsilon$ whenever $\mathcal{P}'=\{([a'_i,b'_i],t'_i):1\leq i\leq k\}$ and $\mathcal{P}''=\{([a''_j,b''_j],t''_j):1\leq j\leq h\}$ are Mcshane partitions of [0,1] subordinate to δ .

The following is a main result of this paper.

Theorem 3.2. Let X be a totally ordered AL-space. $[0,1] \to X$ is Mcshane integrable if and only if f is absolutely Mcshane integrable.

Proof. Suppose that $f:[0,1]\to X$ is absolutely Mcshane integrable. Let $\varepsilon > 0$ be given. Then there exists a gauge δ on [0,1] such that $\sum_{i=1}^{k} \sum_{j=1}^{h} \|[f(t_i') - f(t_j'')]\| \mu([a_i', b_i'] \cap [a_j'', b_j''])\| < \varepsilon$ whenever $\mathcal{P}' = \{([a_i', b_i'], t_i') : 1 \le i \le k\}$ and $\mathcal{P}'' = \{([a_j', b_j''], t_j'') : 1 \le j \le h\}$ are Mcshane partitions of [0,1] subordinate to δ . Therefore $\|\sum_{i=1}^k \sum_{j=1}^h [f(t_i') - f(t_j'')] \mu([a_i',b_i'] \cap [a_j'',b_j''])\| < \varepsilon$ whenever

 $\mathcal{P}'=\{([a_i',b_i'],t_i');1\leq i\leq k\}$ and $\mathcal{P}''=\{([a_j'',b_j''],t_j'');1\leq j\leq h\}$ are Mcshane partitions of [0,1] subordinate to δ . By Lemma 3.1, f is Mcshane integrable.

For the converse, suppose that $f:[0,1] \to X$ is Mcshane integrable. Let $\varepsilon > 0$ be given. Then there exists a gauge δ on [0,1] such that $\|\sum_{i=1}^k f(t_i)(b_i - a_i) - \int_0^1 f d\mu\| < \frac{\varepsilon}{2}$ whenever $\mathcal{P} = \{([a_i,b_i],t_i): 1 \le i \le k\}$ is a Mcshane partition of [0,1] subordinate to δ . Let $\mathcal{P}' = \{([a_i',b_i'],t_i'): 1 \le i \le k\}$ and $\mathcal{P}'' = \{([a_j'',b_j''],t_j''): 1 \le j \le h\}$ be any Mcshane partitions of [0,1] subordinate to δ . Define $t_{ij}' = t_i'$ and $t_{ij}'' = t_j''$ if $f(t_i') \ge f(t_j'')$ and define $t_{ij}' = t_j''$ and $t_{ij}'' = t_i'$ if $f(t_i') < f(t_j'')$. Then $f(t_{ij}') - f(t_{ij}'') \in X_+$ and $\|f(t_{ij}') - f(t_{ij}'')\| = \|f(t_i') - f(t_j'')\|$ for $1 \le i \le k, 1 \le j \le h$. Moreover $\{([a_i',b_i'] \cap [a_j'',b_j''],t_{ij}'): 1 \le i \le k, 1 \le j \le h\}$ are both Mcshane partitions of [0,1] subordinate to δ . Hence

$$\|\sum_{i=1}^{k}\sum_{j=1}^{h}f(t_{ij}')\mu([a_{i}',b_{i}']\cap[a_{j}'',b_{j}''])-\int_{0}^{1}fd\mu\|<\frac{\varepsilon}{2}$$

and

$$\|\sum_{i=1}^k \sum_{j=1}^h f(t_{ij}'') \mu([a_i', b_i'] \cap [a_j'', b_j'']) - \int_0^1 f d\mu \| < \frac{\varepsilon}{2}.$$

Therefore

$$\|\sum_{i=1}^k \sum_{j=1}^h [f(t'_{ij}) - f(t''_{ij})] \mu([a'_i, b'_i] \cap [a''_j, b''_j])\| < \varepsilon.$$

Since X is an AL-space and $f(t'_{ij}) - f(t''_{ij}) \in X_+$ for $1 \le i \le k, 1 \le j \le h$,

$$\begin{split} &\sum_{i=1}^k \sum_{j=1}^h \|f(t_i') - f(t_j'')\| \mu([a_i',b_i'] \cap [a_j'',b_j'']) \\ &= \sum_{i=1}^k \sum_{j=1}^h \|f(t_{ij}') - f(t_{ij}'')\| \mu([a_i',b_i'] \cap [a_j'',b_j'']) \\ &= \|\sum_{i=1}^k \sum_{j=1}^h [f(t_{ij}') - f(t_{ij}'')] \mu([a_i',b_i'] \cap [a_j'',b_j''])\| < \varepsilon. \end{split}$$

Therefore $f:[0,1]\to X$ is absolutely Mcshane integrable. \square

COROLLARY 3.3. Let X be a totally ordered AL-space and Y a Banach space. If $f:[0,1] \to X$ is Mcshane integrable and $g:X \to Y$ is Lipschitz continuous, then the composite function $g \circ f:[0,1] \to Y$ is Mcshane integrable.

Proof. Let $\varepsilon > 0$ be given. Since g is Lipschitz continuous, there exists a K > 0 such that $||g(x') - g(x)|| \le K||x' - x||$ for all $x', x \in X$. Since f is Mcshane integrable, by Theorem 3.2, f is absolutely Mcshane integrable. Hence there exists a gauge δ on [0, 1] such that

$$\sum_{i=1}^{k} \sum_{j=1}^{h} \|f(t_i') - f(t_{ij}'')\| \mu([a_i', b_i'] \cap [a_j'', b_j'']) < \frac{\varepsilon}{K}$$

whenever $\mathcal{P}' = \{([a_i',b_i'],t_i'): 1 \leq i \leq k\}$ and $\mathcal{P}'' = \{([a_j'',b_j''],t_j''): 1 \leq j \leq h\}$ are Mcshane partitions of [0,1] subordinate to δ . Hence

$$\begin{split} &\| \sum_{i=1}^{k} \sum_{j=1}^{h} [(g \circ f)(t'_{i}) - (g \circ f)(t''_{j})] \mu([a'_{i}, b'_{i}] \cap [a''_{i}, b''_{j}]) \| \\ &\leq \sum_{i=1}^{k} \sum_{j=1}^{h} \| (g \circ f)(t'_{i}) - (g \circ f)(t''_{j}) \| \mu([a'_{i}, b'_{i}] \cap [a''_{i}, b''_{j}]) \\ &\leq K \sum_{i=1}^{k} \sum_{j=1}^{h} \| f(t'_{i}) - f(t''_{j}) \| \mu([a'_{i}, b'_{i}] \cap [a''_{i}, b''_{j}]) < \varepsilon \end{split}$$

whenever $\mathcal{P}' = \{([a_i',b_i'],t_i'): 1 \leq i \leq k\}$ and $\mathcal{P}'' = \{([a_j'',b_j''],t_j''): 1 \leq j \leq h\}$ are Mcshane partitions of [0,1] subordinate to δ . Thus $g \circ f$ is Mcshane integrable by Lemma 3.1.

References

- 1. J.Diestel and J.J.Uhl JR., *Vector measures*, Math. Surveys, No. 15, Amer. Math. Soc., Providence, R.I., 1977.
- 2. D.H.Fremlin and J.Mendoza, On the integration of vector-valued functions, Illinois J. Math., **38** (1994), no. 1, 127-147.

- 3. R.F. Geitz, Pettis integration, Proc. Amer. Math. Soc., 82 (1981), no. 1, 81-86.
- 4. R.A.Gordon, The Mcshane integral of Banach-valued functions, Illinois J. Math., **34** (1990), no. 3, 557-567.
- 5. R.Huff, Remarks on Pettis integrability, Proc. Amer. Math. Soc., $\bf 96$ (1986), no. 3, 402-404.
- 6. M. Talagrand, *Pettis integral and measure theory*, Mem. Amer. Math. Soc., No. 307, 1984.

Department of Mathematic Kangwon National University Chuncheon 200-701, korea