Characterization and Acid Catalytic Properties of Beryllia-Silica Catalysts

베릴리아-실리카 촉매의 특성과 산촉매성질

  • Sohn, Jong-Rack (Dept. of Industrial Chemistry, Engineering College, Kyungpook Nat'l Univ.,) ;
  • Park, Eun-Hee (Dept. of Industrial Chemistry, Engineering College, Kyungpook Nat'l Univ.,) ;
  • Jang, Hyang-Ja (Dept. of Industrial Chemistry, Engineering College, Kyungpook Nat'l Univ.,) ;
  • Kim, Hae-Won (Dept. of Industrial Chemistry, Kyungpook Sanup Univ.)
  • 손종락 (경북대학교 공과대학 공업화학과) ;
  • 박은희 (경북대학교 공과대학 공업화학과) ;
  • 장향자 (경북대학교 공과대학 공업화학과) ;
  • 김해원 (경북산업대학교 공과대학 공업화학과)
  • Received : 1995.08.14
  • Accepted : 1996.01.20
  • Published : 1996.04.10

Abstract

A series of $BeO-SiO_2$ catalysts were prepared by coprecipitation from the mixed solution of berylium chloride and sodium silicate. The addition of BeO to $SiO_2$ caused the increased of acidity, acid strength, specific surface area, and acid catalytic activity, giving a maximum at 20 mol% of BeO. On the basis of x-ray diffraction pattern, the catalysts calcined at $400{\sim}500^{\circ}C$ were found to be amorphous, having both $Br{\ddot{o}}nsted$ and Lewis acid sites. Catalytic activities for cumene dealkylation were closely correlated with the acidity of catalysts.

일련의 $BeO-SiO_2$ 촉매를 염화베릴리움과 sodium silicate 혼합 용액을 공침전법으로 제조하였다. $SiO_2$에 BeO를 첨가하면 표면적, 산의 양, 산세기, 산촉매활성이 증가하여 BeO 함량이 20mol%일 때 최대를 나타내었다. X-선 회절로 조사한 결과 $400{\sim}500^{\circ}C$에서 소성된 촉매는 무정형으로 존재하였으며 $Br{\ddot{o}}nsted$ 산점과 Lewis 산점 모두를 가지고 있었다. Cumene의 dealkylation 반응에 대한 촉매활성은 촉매의 산의 양과 밀접한 관계를 가졌다.

Keywords

Acknowledgement

Supported by : 촉매기술연구소

References

  1. Oxide Ceramics Eugene Ryshkewitch;David W. Richerson
  2. Bull. Am. Ceram. Soc. L. G. Bliss
  3. Doklady Akad. Nauk S. S. S. R. v.104 A. A. Beus;S. N. fedorchuk
  4. J. Nucl. Mat. v.14 W. D. Manly
  5. The Elect. Eng. v.26 J. E. Cumeforo
  6. Moderator Materials and Their Fabrication Materials for Nuclear Reactors H. M. McCullough;B. Kopelman(ed.)
  7. Nuclear Reactor Materials and Applications B. M. Ma
  8. Rubber Chem. Technol. v.47 M. P. Wagner
  9. Rubber Chem. Technol. v.48 E. M. Dannenberg
  10. Macromolecules v.1 A. N. Gent;E. C. Hsu
  11. Synthesis Y. Kamitori;M. Hojo;R. Mosuda;T. Izumi;T. Inoue
  12. J. Mol. Catal. v.37 R. L. Augustine;L. Jiwan
  13. J. Mol. Catal. v.37 M. Berry;R. K. Champaneria;J. A. S. Howell
  14. J. Phys. Chem. v.70 J. B. Peri
  15. J. Phys. Chem. v.82 A. J. Van Roosmalen;J. C. Mol.
  16. J. Phys. Chem. v.73 M. L. Hair;W. Hertl
  17. Bull. Chem. Soc. Jpn. v.60 S. Kondo;T. Ishikawa;N. Yamagami;K. Yoshioka;Y. Nakahara
  18. J. Catal. v.101 J. R. Sohn;H. J. Kim
  19. J. Catal. v.136 J. R. Sohn;Hyang Ja Jang
  20. J. Mol. Catal. v.93 J. R. Sohn;Hyang Ja Jang;Man Young Park;Eun Hee Park;Sang Eun Park
  21. Handbook of catalyst Manufacture M. Sittig
  22. 觸媒製調製化學 尾畸萃
  23. J. Catal. v.49 M. Ai
  24. Catalysis : Science and Technology v.2 K. Tanabe;J. R. Anderson(ed.);M. Boudart(ed.)
  25. Specto. Chem. Acta v.20 V. C. Farmer;J. D. Russel
  26. J. Catal. v.61 J. R. Sohn;A. Ozaki
  27. Bull. Chem. Soc. Jpn. v.47 K. Tanabe;T. Sumiyoshi;K. Shibata;T. Kiyoura;J. Kitagawa
  28. Ind. Eng. Chem. v.41 C. L. Thomas
  29. J. Phys. Chem. v.71 M. R. Basila;T. R. Kantnerr
  30. J. Mol. Catal. v.64 J. R. Sohn;H. J. Jang