The Variation of Surface Area in Porous Poly(Styrene-co-Divinylbenzene) Resin Beads

다공성 스티렌-디비닐벤젠 공중합 수지입자의 표면적 변화

  • Kim, Yong-Man (Dept. of Chem. Eng., KAIST) ;
  • Ihm, Son-Ki (Dept. of Chem. Eng., KAIST) ;
  • Kim, Jong-Chan (Dept. of Chem. Eng. and Res. Ins. Environ. Prot., Gyeongsang Nat'l Univ.) ;
  • Lee, Dong-Keun (Dept. of Chem. Eng. and Res. Ins. Environ. Prot., Gyeongsang Nat'l Univ.) ;
  • Ahn, Jou-Hyeon (Dept. of Chem. Eng. and Res. Ins. Environ. Prot., Gyeongsang Nat'l Univ.)
  • 김용만 (한국과학기술원 화학공학과) ;
  • 임선기 (한국과학기술원 화학공학과) ;
  • 김종찬 (경상대학교 화학공학과 및 환경보전연구소) ;
  • 이동근 (경상대학교 화학공학과 및 환경보전연구소) ;
  • 안주현 (경상대학교 화학공학과 및 환경보전연구소)
  • Received : 1996.01.08
  • Accepted : 1996.07.29
  • Published : 1996.10.10

Abstract

Porous resin beads of Poly(styrene-co-divinylbenzene) have been prepared by suspension polymerization. The bead could be made porous in the region above 30wt% of the crosslinking agent(divinylbenzene ) and the porogenic agent(toluene), respectively. The specific surface area of porous beads increased with increasing the concentrations of divinylbenzene and toluene. The specific surface area of the porous resin bead decreased, when sulfonated with concentrated sulfuric acid. The catalytic activity of sulfonated resin catalyses increased with increasing the degree of crosslinking in the liquid-phase reesterification of ethyl acetate with 1-propanol. The adsorbed quantity of sodium dodecylbenzene sulfonate in an aqueous solution also increased with increasing surface area of porous resins.

현탁중합에 의하여 다공성 스티렌-디비닐벤젠 공중합 수지입자를 제조하였으며, 그 수지입자는 가교제인 디비닐벤젠과 세공형성제인 톨루엔 농도가 각각 30wt% 이상일 때만 다공성을 나타내었다. 다공성 수지입자의 비표면적은 디비닐벤젠과 톨루엔의 농도에 따라 증가하였으며, 진한 황산으로 황산화시켰을 때 비표면적은 감소하였다. 에틸아세테이트와 1-프로판올의 에스테르화 반응에서 황산화된 수지촉매의 활성은 가교도에 따라 증가하였다. 수용액 중 sodium dodecylbenzene sulfonate의 흡착에서 다공성 수지입자의 표면적에 따라 흡착량이 증가하였다.

Keywords

References

  1. Polymersupported Reactions in Organic Synthesis P. Hodge(ed.);D. C. Sherington(ed.)
  2. Syntheses and Separations Using Functional Polymers D. C. Sherrington(ed.);P. Hodge(ed.)
  3. Polymers as Aids in Organic Chemistry N. K. Mathur;C. K. Narang;R. E. Williams
  4. ACS Symposium Series no.308 Polymeric Reagents and Catalysts W. T. Fore(ed.)
  5. J. Appl. Polym. Sci. v.23 H. Jacobelli;M. Bartholin;A. Guyot
  6. J. Appl. Polym. Sci. v.27 P. P. Wieczorek;M. Ilavsk;B. N. Kolarz;K. Dusek
  7. J. Korean Environ. Sci. Soc. Y. G. Seo;J. H. Ahn;B. Y. Heo
  8. J. Catal. v.113 J. H. Ahn;S. K. Ihm;K. S. Park
  9. Ind. Eng. Chem. Res. v.27 S. K. Ihm;M. J. Chung;K. Y. Park
  10. J. Polym. Sci. B v.2 K. A. Kun;R. Kunin
  11. J. Polym. Sci. C v.16 K. A. Kun;R. Kunin
  12. J. Polym. Sci. A-1 v.6 K. A. Kun;R. Kunin
  13. J. Chem. Soc. J. R. Millar;D. G. Smith;W. E. Marr;T. R. E. Kressman
  14. J. Chem. Soc. J. R. Millar;D. G. Smith;W. E. Marr;T. R. E. Kressman
  15. J. Chem. Eng. Japan v.15 S. K. Ihm;S. S. Suh;I. H. Oh