Synthesis of Poly(alkylene carbonate) from Carbon Dioxide

이산화탄소로부터 Poly(alkylene carbonate)의 합성

  • Lee, Yoon-Bae (Dept. of Chem. Eng., College of Eng., Soonchunhyang Univ.) ;
  • Choi, Jeong-Hyun (Dept. of Chem. Eng., College of Eng., Soonchunhyang Univ.)
  • 이윤배 (순천향대학교 공과대학 화학공학부) ;
  • 최정현 (순천향대학교 공과대학 화학공학부)
  • Received : 1996.07.16
  • Accepted : 1996.08.27
  • Published : 1996.10.10

Abstract

In order to reduce carbon dioxide, one of the major greenhouse gases, a new type of copolymer, poly(alkylene carbonate) has been synthesized. The alternating copolymers have been obtained from carbon dioxide and various epoxides with zinc carboxylate as a catalyst. The number-average molecular weight of the polymer is about 50,000 and polydispersity is rather broad(5~10). The polymers are amorphous, and glass-clear materials that exhibit unusually facile and clean thermal decomposition behavior. Complete decomposition with no carbon residue is observed at elevated temperature even in an inert atmosphere. Terpolymers with bulkier epoxides improve the physical properties of the copolymer with simple epoxides. The decomposition properties of the polymer provide versatile applications such as ceramic, metal, and electronic binders and lost-foam casting. Further application of the polymer for the barrier film or the plasticizer will be investigated.

온실효과에 주요한 기여를 하는 이산화탄소를 줄이기 위하여 새로운 형태의 고분자인 폴리(알킬렌 카보네이트)가 합성되어졌다. 이산화탄소와 여러 가지 에폭시드로부터 칼복시산의 아연염을 촉매로 하여 교대 공중합체가 만들어졌다. 중합체의 수 평균 분자량은 50,000 정도이면 중합 분산도는 5~10 정도로 비교적 넓은 분포를 갖는다. 이 중합체는 비 결정성이고, 투명한 물질로써 열분해가 쉽게 일어난다. 높은 온도와 불활성 분위기 하에서도 완벽한 분해가 일어나 탄소 잔류물을 남기지 않는 것으로 알려졌다. 간단한 에폭시드와의 공중합체의 물리적인 성질을 개선하기 위하여 입체 장애가 큰 에폭시드와의 삼원 공중합체도 만들 수 있다. 이러한 분해성을 이용하여 세라믹, 금속, 전자 산업용 바인더나 lost-foam casting에 활용이 검토되었다. 또한 포장용 필름이나 가소제로의 활용도 연구될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. 지구환경과 바이오테크놀러지 가루베 이사오;조성효(역)
  2. Carbon Dioxide as a Source of Carbon M. Aresta;G. Forti
  3. Dlectrochemical and Electrocatalytic Reactions of Carbon Dioxide B. P. Sullivan;K. Krist;H. E. Guard
  4. Chemical Fixation of Carbon Dioxide M. Halmann
  5. Carbon Dioxide Chemistry M. Super;K. Parks;E. Beckman;J. Paul;C.-M.Pradier
  6. Enzymatic and Model Carboxylation and Reduction Reactions for Carbon Dioxide M. Aresta;J. Schloss
  7. Carbon Dioxide Chemistry B. Eliason;J. Paul(ed.);C. M. Pradier(ed.)
  8. 화학공업과 기술 v.11 박진원;梶內俊夫;進藤勇治;이승무
  9. 화학공업과 기술 v.11 이상영;이재성
  10. 화학공업과 기술 v.12 박상언;장종신;이규완
  11. Poly Lett. v.7 S. Inoue;H. Koinuma;T. Tsuruta
  12. Makromol. Chem. v.130 S. Ipue;H. Koinuma;T. Tsuruta
  13. Macromol. Sym. v.7 S. Ipue;H. Koinuma;M. Kobayashi;T. Tsuruta
  14. Bull. Chem. Soc. Jpn. v.61 Y. Yoshida;S. Ishi;A. Kawato;T. Yamashida
  15. U. S. Patent 3,706,713(1972 to Shell)
  16. U. S. Patent 4,303,759(1981, Air Products) D. Dixon;M. E. Ford
  17. U. S. Patent 4,665,136(1987, Air Product) J. Santanglo;J. Weber;R. Sinclair
  18. Air Product & Chemicals Internal Report J. Santangol;J. Tao
  19. ARCO Chemical Co. Internal Report Y. B. Lee;M. J. Cannarsa
  20. J. Soonchunhyang University v.16 Y. B. Lee
  21. 한국과학재단연구보고서 Poly(alkylene carbonate) 합성에 관한 연구 Y. B. Lee
  22. Polymer(Korea) v.19 Y. B. Lee
  23. Polymer J. v.2 S. Inoue;H. Koinuma;T. Tsuruta
  24. Makromol. Chem. v.143 S. Inoue;H. Koinuma;Y. Yokoo;T. Tsuta
  25. Makromol. Chem. v.176 S. Inoue;H. Hirano;T. Tsuruta
  26. Makromol. Chem. v.177 S. Inoue;H. Hirano;T. Tsuruta
  27. Makromol. Chem. v.177 S. Inoue;H. Hirano;T. Tsuruta
  28. Polymer J. v.9 S. Inoue;H. Hirano;T. Tsuruta
  29. Makromol. Chem. v.183 M. Takanashi;Y. Nomura;Y. Yoshida;S. Inoue
  30. Polymer J. v.14 Y. Yoshida;A. Nishiyama;S. Inoue
  31. Makromol. Chem. v.178 H. Koinuma;H. Hirai
  32. Makromol. Chem. v.181 S. Inoue;K. Matsumoto;Y. Yoshida
  33. U. S. Patent 2,773,070(1956, Jefferson Chemical Co.) M. Lichtenwalter;J. S. Cooper
  34. Indus. Eng. Chem. v.50 W. J. Peppel
  35. U. S. Patent 4,746,725(1988, to GE) T. L. Evans;N. R. Rosenquist;E. E. Bostic
  36. Polum. J. v.20 G. Rokicki;P. Jezewski
  37. U. S. Patent 4,746,726(1988, to GE) T. L. Evans;B. Berman
  38. J. Macromol. Sci.-Chem. v.A26 H. R. Kricheldorf;J. Jenssen
  39. Ring Opening Polymerization v.1 S. Inoue;T. Aida;K. J. Ivin(ed.);T. Saegusa(ed.)
  40. unpublished data Y. B. Lee
  41. Eur. Pat. Appl. Ep. 222,453(1987, Shell) P. W. Lendor;G. A. Pogany
  42. J. Appl. Pol. Sci. v.38 R. F. Harris
  43. Bull. Am. Phy. Soc. v.1 T. G. Fox
  44. Makromol. Chem. v.179 K. Soga;K. Hyakoku;S. Ikeda
  45. Jpn. Kokai Tokkyo Koho 79,137,994(1979, Michubishi) M. Nishimura;M. Kasai;H. Tchukida
  46. Polym. J. v.13 K. Soga;E. Imai;I. Hattori
  47. J. Pol. Sci: Polym. Lett. v.23 P. Gorecki;W. Kuran
  48. U. S. Patent 4,500,704(1985, Dow) W. J. Kruper Jr;D. J. Swart
  49. J. Macromol. Sci.-Chem. v.A24 L. Chen;H. Chen;J. Lin
  50. J. Pol. Sci: Polym. Lett. v.18 D. Dixon;M E. Ford
  51. Polymer J. v.16 Y. Hino;Y. Yoshida;S. Inoue
  52. Polymer Preprint v.35 J. M. Bronk;J. S. Riffle
  53. Bull. Chem. Soc. Jpn. v.51 N. Takeda;S. Inoue Porphyrin
  54. J. Macromol. Sci.-Chem. v.A13 no.5 S. Inoue
  55. J. Am. Chem. Soc. v.105 S. Inoue;T. Aida
  56. Polymer Prep. S. Inoue
  57. Macromolecules v.19 T. Aida;M. Ishikawa;S. Inoue
  58. Polym. Deg. and Stab. v.18 A. Rincon;I. C. McNeill
  59. Chem. Pharm. Bull. Jpn v.31 T. Kawaguchi;M. Nakano;K. Juni;S. Inoue;Y. Yoshida
  60. Makromol. Chem. v.184 W. Kuran;P. Gorecki
  61. Polym. Deg. and Stab. v.26 G. Montaudo;C. Pulglisi;F. Samperi
  62. U. S. Patent 4,066,630 (1978, Air Products) D. Dixon;M. E. Ford;G. J. Mantell
  63. U. S. Patent 4,145,525(1979, Air Products) D. Dixon;M. E. Ford;G. J. Mantell
  64. Process Evaluation Research Planning Poly(alkylene carbonate) Chem. Sytem