Journal of the Kerean Institute
of Indusirial Engineers
Vol.22, No.3, September, 1998 485

A Pseudopolynomial-time Algorithm for Solving a
Capacitated Subtree of a Tree Problem in a
Telecommunication System

Geon Cho*

Abstract

For a tree T rooted ot a concentrator location in a telecommunication
system, we assume that the capacity H for the concentrator is given ond a
profit ¢, and o demand d, on each node v of T are also given. Then, the
capacitated subtree of a tree problem (CSTP) is to find a subtree of T rooted
at the concentrator location so as to maximize the total profit, the: sum of
profits over the subtree, under the constroint salisfying that the sum of
demands over the subtree does not exceed H. In this paper, we develop «
pseudopolynomial-time algorithm for CSTP, the depth-first dynamic program-
ming algorithm. We show that a CSTP can be solved by our algorithm in ¢
(nH) time, where n is the number of nodes in T. Qur algorithm has its own
advantage and outstanding computational performance incomparable with
other approaches such as €PLEX, a general integer programming solver, when
it is incorporated to solve a Local Access Telecommunication Network design
problem. We report the computational results for the depth-first dynamic
programming algorithm and also compare them with those for CPLEX. The
comparison shows that our algorithm is competitive with CPLEX for most cases.

1. Introduction on each node v of T are given. Let H be a
given capacity for a concentrator located at root

Given an undirected tree T = (V,E) rooted 0. Then the capacitated subtree of a tree
at node 0 with a node set V and edge set E, problem (CSTP) is to find a subtree T of r
we assume that a profit ¢, and a demand d, rooted at node 0 so that the sum of profit over

* Department of Business Administration, Chonnam National University, Kwangju 300-757, Korea

486 Geon Cho
E:

7' is maximized and the sum of demand over
T does not exceed H.

CSTP plays an important role in a telecom-
munication system such as the Local Access
Telecommunication Network (LATN) design.
Most existing LATNs have a tree structure. The
LATN connects individual customer nodes to
the corresponding switching center (central
office) that communicates with other switching
centers via the backbone network. Each custo-
mer node has a demand which represents the
required number of circuits from that node to
the switching center. This demand can be
satisfled in two ways: either by providing a
dedicated cable from the customer node to the
switching center for each required circuit, or
by routing the circuits to a concentrator. The
concentrator combines incoming signals on
multiple lines into a single composite higher
frequency signal that requires one outgoing line
(see Balakrishnan et af. [3,4]). The objective
of the LATN design problem is to select
concentrator locations and to assign each
customer node to cne of the selected concen-
trators sO as to minimize the total cost, subject
to the concentrator capacity constraint. The
optimal solution of this problem can be
obtained by solving a series of CSTPs (see
Cho and Shaw [5] and Shaw [13]). Another
application of CSTP arises in a single machine
scheduling probiem (see Ibarra and Kim [8]).
However, CSTP is an NP-complete problem
(Carey and Johmson [7]), since the O-1
knapsack problem is a special case of CSTP

LT

T

where the depth of the tree is one. Johnson
and Niemi [9] introduced certain “left-right”
dynamic programming algorithm for CSTP
which could find the optimal value " in
8 (nC") where n is the number of nodes in 7.
Shaw [13] solved it through a dynamic
programming algorithm in O(ni).

Many important tree-optimization problems,
including the CSTP, p-median problems on tree
(Kariv and Hakimi [10]}, and uncapacitated
facility location problems on tree (Cornuejols.
Nemhauser, and Wolsey [6]), can be solved
through dynamic programming aigorithms. One
popular approach used in these dynamic
programming algorithms is the battom-up
approach, which was proposed first by Lukes
[11]. Recently, Magnanti and Wolsey [12] have
used such an approach to solve CSTP and
related problems in telecommunication systems,

In this paper, we present a new dynamic
prograsmming technique on tree, the depth-first
approach, which exploits the tree in the depth-
first search (DFS) order (see Ahuja et af. [21)
and solves a CSTP in 6(nH) time. Such an
approach is motivated from the “left-right”
dynamic programming algorithm developed by
Johnson and Niemi [9]. However, our algo-
rithm has much simpler procedure and easier
implementation than Johnson and Niemi’s. By
combining those two algorithms, CSTP can be
solved by a dynamic programming algorithm
in 8(n min{C"H)).

The depth-first dynamic programming algo-

rithm has some advantages for performing

A Pseudopolynomial-time Algorithm For Selving a Capacitated Subtree of a Tree Problem in a Telecommunication System 487

sensitivity analysis to selve a series of CSTPs.
As we mentioned before, since the LATN
design problem can be solved by solving the
series of CSTPs, our algorithm plays a central
role in solving LATN design problem (see Cho
and Shaw [5]). In this paper, we briefly
introduce the main idea discussed in Cho and
Shaw [5] how to solve the LATN design
problem by incorporating our depth-first dynam-
ic programming algorithm for CSTP. It 1turns
out that our depth-first dynamic programming
code for CSTP not only is very competitive to
a general integer programming solver, CPLEX,
but also gives outstanding computational perfor-
mance incomparable with CPLEX when it is
incorporated to solve the LATN design prob-
lem. For example, CPLEX could not even
solve LATN design problems with »=15, H=
1000 on SUN SPARC 1000 workstation within
24 hours, whereas the developed algorithm in
Che and Shaw [5] could solve problems with
k=150, H=1000 within 2 minutes (for more
Getails, see Cho and Shaw[5]).

This paper is organized as follows. We first
formulate the capacitated subtree of a tree
problem (CSTP) in Section 2. Section 3
describes the depth-first dynamic programming
algorithm for CSTP. In Section 4, we provide
4 formal proof of the correctness of our
algorithm and also show that its complexity is
#(nH), where n is the total number of nodes
in T and H 15 the given concentrator capacity.
Section 5 introduces a generalized version of
the CSTP which acts as a subproblem in LATN

design problem. One example and the compu-
tational results on a set of randomly generated
problems are given in Section 6. Finally,
Section 7 concludes the paper.

2. Problem Description

Given an undirected tree T = (V,E) rooted
at node 0, where V=1{0, 1, 2, ---. n}, we assume
that nodes in T are labeled in DFS order,
starting from the root node. For each node
i€V, an integer ¢; and a nonnegative integer d,
represent the profit and the demand at node i/,
respectively. Let p; be the predecessor of node
i and let ¥ (i, j) denote the unique path from
node i to node j. Then T()={jjic ¥{0,/}} is
the complete subtree rooted at node . Define

a relation *=<"as follows:

V<VeT=(V E) is a subtree of
T = (V.E) rooted at 0.

If H is a given capacity for a concentrator
located at the root node, then the capacitated
subtree of a tree problem (CSTP) is to find a
subtree T =(V",E") of T rooted at node 0, where

V*=argmaxvaﬂ,-[Y| T d<H }

ey eV
Let
l 1 if node j is served
X= .
1o otherwise.

Then, CSTP can be formulated as the

following integer programming problem:

488 Geon Cho

]

max ¥ ¢, 2.1
=0
{CSTP) s.t. X, 2x, j=l2:n (2.2)
Sdx<H 23)
Fo
%€(0, 1}, (2.4)

We assume that

d;=H for all j=0, 1, 2,:+-, n

and
> dj>H .
=0

Otherwise, either the problem size can be
reduced or the constraint (2.3) can be eliminat-
ed, and the problem is reduced to the
uncapacitated subtree of a tree problem, which
can be solved in O(n) time (see Shaw and Cho
[14]). We now sketch the main idea of our
“depth-first” dynamic programming algorithm
for CSTP.

3. Dynamic Programming Algorithm
for CSTP

For k=n, let L = {0, 1, 2.+, k} be a subset
of V representing labeled (visited} nodes and
T;=(L.E;) be the induced subtree of T. For a
given capacity # and a given node vEL, we

now define a value P;(v.k) as follows:

k
PL(V,h]=maX Z CX; |xp_2xj, OQSk’
=0 !

k
Ydx;<h, and x=1}. (3.1

Then, max{P{0,H),0} is the optimal value
of CSTP. More precisely, let L,={0, 1, 2,-, £}.
Then we can find the value P{0.H) in O(n#)

time by applying the following recursive rules:

1. (Initialization)

¢ if h<h=H
POR=] " _
— o0 otherwise

2. {Forward move to expand the set of
labeled nodes)
For k%0 and for each h = 0, 1, 2,---,
Hs

je k)

PLt(k,k)= [
-0 otherwise
3. (Backward move to revisit labeled nodes)
Let v = 0 and L=L,_,UT(y).
Then, for each A=0,1,2,---, H,
P, (p,=max{P; {(p.h).P (v}

Note that recursive rule 3 shows that,
whenever we revisit a labeled node p,, the
predecessor of node v, we can find the p,(p..h)
by comparing the current values associated
with two subtrees, one which includes node v,
and one which does not.

We now summarize the main idea of our
DFS-approach as follows: we begin with the
root node 0. We first initialize P, (0,h) for all
R =01, 2, H by using recursive rule 1.

Whenever we visit a new node v in DFS-order,

A Pseudopolynomial-time Alporithm for Solving a Capacitated Subtree of a Tree Problem in a Telecommunication System 489

we include it as a member of L, a set of
labeled nodes, and evaluate P,{p k) for ali. k
=0, 1, 2,---, H by using recursive rule 2. If
we visit a leaf node v or a node v such that
all of its successors have been labeled (visited),
we revisit p, and evaluate P;(p 4) for all # =
0, 1, 2,.~, H by using recursive rule 3.
Otherwise, there are some unlabeled successors
of node p,; then we perform the forward move
by visiting the first unlabeled successor of the
node p,. We continue the above procedure until
the root node can be revisited from its last
successor, and finally find the optimal value,
{PU0,H),0}.

To find an optimal solution, we define the
index I,(v,h} of node v which corresponds to
P(vh) as follows:

1 if dy<h=<H

1. I, (O,h)=
l"() [0 otherwise

2. Let v=0 and L=L,_ UT(). Then

if P, ip)¢ P nh) and d=h
1 L L‘__l(p})(L(V_) an e ;(m-)j

IL(l’,th
0 otherwise.

Here ‘1" and ‘0" stand for ‘adding’ and
‘deleting’ a node during the DFS-approach,
respectively. We don’t need to keep track of
the indices /; (k,#) which correspond to Py (k./)
(ie., forward move) because we will update
the indices ; (k) whenever we perform the
backward move. We will discuss how to find
the optimal solution in detail right after
Algorithm 1 is presented.

Now we present our algorithm which finds

the optimal value for CSTP. We will use P(v,
#) and 7(v,h) in the algorithm instead of using
P (k) and I, (v,h), respectively. It is impor-
tant to observe that we don’t have to keep
track of L, in the algorithm because P(v,h) and
Hv,h) are overwritten by the newly evaluated
values. In fact, the values PLt(v,k) and / Lk(v,h)
are not updated until a ‘backward move’
revisits the node v from one of its successors.
Note that the values P {wih) and I, {v,h) are
determined by a ‘backward move’ from the last
successor of v to the node v. Consequently,
we just need 6(nH) storage space to find the
optimal value and optimal solution. Let last(:)
= max{j|j€T{)} be the last node in TG).

Algorithm 1. Optimal_Value_CSTP;

begin
[comment: Initialization}
d-=min{d;|jEV};
for h:=d up t0 dy—1 do
P(O,h):=—ao; KOK):=0:
for h:=dy up to H do
P(Oh):=cy 1(0A):=1;
{comment: Main Loop]
d_path:=d,;
for k= L up to n do
begin
Forward _Move(k);
if {k = last(k)) then
{comment: & is a leaf node}
v:=K,;
do

4%0 Geon Cho
-]

Backward_Move(v);
=Py
while (lastv) = k and v * Q)
{comment: v has no successor { such
that i } k and v * 0}
end if
end

end
Procedure Forward_Movelu):
begin

d_path:=d_path+d,;
for h:=d up to d,—1 do

Plu)= —w;
for h=d, up t¢ H do
begin

if (d_path<h) then
Pluh):=Pp h—d)c,
else
Plu,)= —co;
end if
end

end
Procedure Backward _Move(w);
begin

d_path:=d_path—d,;
for h:=d vp to H do

begin

if (P{p,h) >Plu,h)) then
Hu,h):= 0

else

Pp,.h):=Pluh);
k)= 1,
end if
end
end

The values of P(v,7) and /{v,k) at the end
of Algorithm 1 are, in fact, P,{v.,h) and {,(v.h)
with L=L, ,UTv), respectively.

To find the optimal solution for CSTP, we
need to understand how our recursive rules are
applied to find the optimal value P {0.H). For
this purpose, let SGi) be the set of successors
of node i and IS())t be the cardinality of S(:).
Let succ(ik} be the k-th successor of node i.
Then we begin with w = succ(0, |S(0)]). Since

PAO.H)=max [P, (O.H).PwH) |,

we need to consider the following two cases:
Case 1. P, (O.H) = Pylw.H)
Case 2. P, __1(0,H)<PV(w,H).

For Case 1, the returned index I{w.H) (in
fact, I Aw,H)} from Algorithm 1 must be 0;
therefore we set x=0 for all k€ T(w), update
w by succ(0,]|S(0}!-1), and continue to check
the indices for all vET(w) with the capacity
H. For Case 2, the returned index Hw.H) (in
fact, I Aw,H)) must be 1 and thus we set x,=1.
In this case, if |S(w)|=0 (i.c., if w is a leaf}
then we update w by succ(0, |S(0)|-1) and
continue to check the indices for all v&T(w}
with the capacity H—d,. If [S(w)] >0 then,

A Pseudopolynomial-time Algorithm for Seiving a Capacitated Sublrec of 2 Tree Problem in a Telecommunication System 491

since
PwH)=max | P, _(wH), PyluH) |

with u = succlw, [S(w)|), we, again, have
two cases io consider as before. By repeating

the above procedure, we are able to find a set
K= { kET(W)“Li_IUnk)(ksH):l I .

We then set x,=1 for all k€K and replace
w by succ(0, 1S(0)| — 1) and continue to check
the indices for all veTlw) with the capacity
H- ¥ d,

B;Eégontinuing the above procedure until we
can check the indices for all veT(w) with w
= succ(0,1), we are able to find the optimal
soluiion for CSTP. Our algorithm for finding
the optimal solution for CSTP is described as

follows.

Algorithm 2. Optimal _Solution _CSTF;

begin
num = |S(0)|;
while (xum = 0) do
begin
w t = succl0, num);
K:= |ieTwW[{iH=1]};
x:=1 for all i€K;
H=H— % dj
num : =jErfum - 1;
end
end

Note that we also need #(nH) storage space
to find the optimal solution for CSTP.

4. Correctness and Complexity of Algo-
rithm 1

We use induction to prove rigorously the
correctness of Algorithm 1 and also estimate

its complexity.

Theorem 1. Algorithm ! is correct.

Proof: To show the correctness of the
algorithm we only need to prove that the value
P(0,H} produced at the end of Ailgorithm 1 is
indeed the optimal value of CSTP, subject to
x~1. To prove this, it suffices to establish the
following claim: for every tree T rooted at node
0 with #+1 nodes, the value PLR(v,h) computed
by Algorithm 1 is exactly equal to ﬁLn(v,h) for
all ve ¥(0,n) and for afl h = 0, 1, 2,---, H,

where
_]
Py (vh)=max{ Zc,—x,—ixpjzxj, 0(jsn,
" =0
i1
Ydx,<h, and x=1}. (4.1)
=9
For n=0, it is trivial. Assume that the claim
is true for all trees with k nodes, k=<n. Now
we consider a tree T rooted at node 0 with
n+1 nodes. If v=n then we have

P, (npkP, _I(pn,h—d"hc“, by recursive rule 2.

Sice p,€ y(0n) we have P, (p h-d)<P,-1ip,hd,)

492 Geon Cho

by the induction hypothesis. Therefore,

P (ni)=P;, _(p,h—d)c, (4.2)
=P, (nh), {4.3)

where the last equality follows from the
definition in (4.1).
Now, let 7{0n)={0=v;, v, -, Vo V=n}. We want
(¢ prove that the claim is true for all
v, i=0, 1, 2,
proved the case for i = ¢ in (43). For i =

vq. Clearly, we have already
g-1, we have, by recursive rule 3,
PL!{vq_lﬁFmax[P,_r (vq_l,ﬁ),PL,(vq,h]l. 4.4)

Since vq—l=n-1<n and v,_,€ 7y (0,n), we

q
have, by the induction hypothesis,

h}.

PL\, (vq_;,h)=FL‘lq_](vq_|,

a—1
Therefore, it follows immediately from (4.3)
and (4.4) that

(h)_max PL (LQ].) FL"(\'q,h)

‘i‘l’

=Pin(vq_l,h),

where the last equality follows from the
definition in (4.1).

Consequently, by going up along the path
7 ©n) we have Py (v,h)=P, (v,h) for all i =
0,1, 2,
that, for every tree T with n + | nodes, the

=, g— 1. Therefore, we have proved

claim is irue for all ve ¥ (0,n) and for all &

The following theorem proves that the
complexity of Algorithm 1 is &(nH)

Theorem 2. A CSTP can be solved by
Algorithm 1 in the time-complexity and the
space-complexity of 8(nH)

Proof: Algorithm | performs essentially two
basic operations: the forward move and the
backward move for every veVi[0}. In fact, if
a node has an unvisited successor then it
performs the forward move. Otherwise, it
performs the backward move. At the root node,
the algorithm performs only the forward move.
Thus, Algorithm 1 has exactly n+1 forward
moves and n backward moves. Since each
move requires O(H) time, the overall time
complexity for Algorithm 1 is €(nH). Since
the algorithm requires storing P(v,k) and I(,
A) for all veV and for all h = 0, I, 2., H
respectively, the space complexity for the
algorithm is also &(nH). O

5. Generalized Version of Capacitated
Subtree of Tree Problem

In this section, we briefly intreduce a
generalized version of CSTP (GCSTP) dis-
cussed in Cho and Shaw [S]. In fact, to solve
a LATN design problem, we have to solve
problems for which the concentrator can be
located anywhere on the tree. Therefore, we
need to consider a GCSTP defined in the

following. Since this problem acts as a

A Pseudopolynomial-time Algorithm for Solving a Capacitated Subtree of a Tree Problem in a Telecommunication System 493

subproblem in solving a LATN design problem,
we also want to restrict the problem on each
subiree T{k) for k = 0, 1, 2,--, n. Let node |
be the concentrator location and pj- be the
predecessor of node j with respect to node i,
which is defined as the first node other than
node j on the path P[;i]l. Then, GCSTP
restricted on 7T(k) with the conccentrator
location i is defined as foilows:

max 2 o
JETR 7

(GCSTPY) st x, =x;, jETUM k)
s

S dx,<H
JETW) g

KE{0,1}, jETRN}.

Note that (GCSTP}) becomes a CSTP when
the concentrator location i is equal to the root
node k& of T(k). To solve a LATN design
problem, we bave to solve a class of (GCSTP})
for k€P[i0) and i = 0, 1, 2,---, n. From our
previous analysis, each (GCSTPY) can be
solved by the depth-first dynamic programming
algorithm in & |T(k)|H) time. One significant
advantage of the depth-first dynamic program-
ming algorithm in contrast to other approaches
is to be abke to sobve (GCSTP,) i &| Tlp T (k) | H)
time, once the optimal value of (GCSTP)) is
given. Hence, a series of (GCSTP.) for all
k= P[i,0] and fixed i can be solved in just &
(nH} time. Consequently, we can solve the
class of (GCSTP)) for all k€P[i,0) and i = 0,
1, 2,-++, n {and thus, the whole LATN design

problem} in &(n’H) time, whereas one of the
best algorithin which incorporates a bottom-up
approach developed by Shaw [13] could solve
it in G(x’H*) time. This is the main reason
why the depth-first dynamic programming
algorithm was incorporated to solve the
GCSTPs in developing algorithms for the
LATN design problem in Cho and Shaw [5].

6. Example and Computational Results

Consider the tree in Figure 1 with H= 18,
In this example, all nodes are labeled in DFS
order. Numbers in the square box stand for
demands and numbers above the box stand for
profits, First, we begin with node 0. Since di=2,

we have

30 if 2<hp=<18

P IDI(O!h)= | .
—w otherwise

Figure 1. Example

and

294 Geon Cho

I if 2=hA<18
0 otherwise .

£10)(0h)=

Then we visit node 1 and evaluate P[O‘l}(l,h)

by using recursive rule 2 as follows:

P{O,I}(lsh)=P{0}(0,h _d1)+(,‘|

‘43 if 6=h=<I18§

— otherwise.

Now we visit node 2 and can get Py, ,(2,%)

in a similar way:

48 if 6=hH=<18

Po1ny(2.0)= [
{o,0.2) —o otherwise .

Since node 2 is a leaf node (i.e.,|S(2)]=0),
we revisit its predecessor, node 1, (backward
move) and evaluate P, .,(1,4) and Iy, (1A)
as follows:

Pm,],-_,_,(l,h)=max [P{D_u(l,h),P{U_]‘EI(Z,h) I

48 if 10<h=<18

=143 if 6<r{10
— otherwise
and
1 if 10=h<18
Jr10,ui(2=h}=

otherwise.

Since node 1 has an ualabeled successor
node 3, we visit node 3 and evaluate P, ,;,(3.)
zs before. Since node 3 is a leaf node, we
revisit node 1 and also evaluate Py, ., (1,1 and
10.123(3,). Now, since node 1 has no
unlabeled successors, we revisit node 0 (back-

S

=l

ward move) and evaluate
Pyoian(O=max | Py (0,4)P . (LA |

and

1 if 6<h=<18

I {Lh)= :
J0,8,2.3}) otherwise.

Continuing this way, we can find P; (7,1)
with L={/|0<i=<7} as follows:

PL(11)=P, (5h=do)c,

67 if 152A<18
=152 if 13=<h{15
—® otherwise .

Since node 7 is a leaf node, we revisit node
5 and find

Py (5)=max { Py (Sh)P(T4) |

70 if 16<hA=<18
67 if A=15
=357 if 12<k{15

42 if 10<h{12

— otherwise
and

if h=15

]L?(?’h)= 0 otherwise.

Since node 5 now doesn’t have an unlabeled
SUCCESSOT node, we revisit its predecessor, node

4, and evaluate

A Pseudopelynomial-time Algorithm for Selving a Capacitated Subirec of & Tree Problem in a Telecommunication System

Pb(4,h)=max | PL4(4,h)-,PL?(5,h)]

and

] if 16<h=<18

I, (5.h)=
I 0 otherwise.

By continuing the above procedure we can
finally obtain the optimal value Py{0,18)=76

from the following result:

PA0h)=max [P, (0.),P,(8,7) |

76 if 17=h=18
75 if A=16
70 if 12=<h{16
64 if A=11
63 if =10
57 if A=0
= {50 if /=8
49 if h=7
43 if 5<h(7
37 if k=4
36 if h=3
30 if h=2
and —w otherwise

if 5=3,5,6,7,10, or 125418

1
18,k
¥ 0 otherwise.

Figure 2 shows how our depth-first pro-
cedure has been performed to find the optimal
value P{0,18) in this example.

New, to find the optimal solution, we first
sheck 71,(8,18), which is 1. Therefore, node 8

ts included in the optimal solution (i.e., x=1).

495
A T

Since di=1 we check Iy (k17) for all £ET(4).
We then have a set K={4,5,6,} of nodes in

Figure 2. Depth-first procedure for the example

T(4) whose indices are i. We now replace 17
by 17— ¥ d;=7 and continue to check IL[(k,T)
for all J(keé?(l). Finally, we see that only
I, (1,7} is 1, and therefore we obtain the

following optimal solution shown in Figure 3:

1 if =0,1,4,5,6,8

10 otherwise.

We now report the computational results for
our depth-first dynamic programming algorithm
for the CSTP. To the best of our knowledge,
there are no computational results as well as
the benchmark of test problems for CSTP in
the literaiure. We then tested these algorithms
on a set of randomly generated test problems.
To observe the performance of our algorithm
roughly, we compared our code with a general

integer programming solver, CPLEX, on a set

496 Geon Che

of randomly generated problems. Table 1
presents the worst, the average, and the best
CPU time (measured in seconds) out of eight
randomly generated test problems in each case.
It also includes the average of each of the
following values obtained from CPLEX: the
number of nodes generated in the decision tree,
the optimal value of LP relaxation of CSTP,
and the optimal value of CSTP. The test results
show that our algorithm is very competitive to
CPLEX for most cases. Note that, however,
rhis comparison may not be significant, since
the CPU time for our algorithm is proportional
1o the capacity H, whereas one for CPLEX
seems not to be affected much by H. Instead,
as we discussed in the previous section, the
key advantage of using the depth-first dynamic
programming approach in application areas
such as a LATN design problem is to be able
1o sobve the sexies of GCSTRS, {GCSTPL |k € P[i0])
in &(nH) time which is equal to the complex-
ity of a single CSTP.

Figure 3. Optimal tree for the example

To generate a problem randomliy, we speci-
fied the total number of nodes n in the tree
first. Then, starting from the root node, we
randomly generated the number of successors
of each nede from an interval [0,10g:7] in the
Breadth First Search(BFS) order until the total
number of nodes was met. In our test problem
set, the number of node # and the capacity H
were in the range [50,500] and [5000,10000).
respectively. The demand d; was randomly
generated from the range [1,1000]. We believe
that those values generated in this paper is
quite big enough to be considered as the real
data. Algorithms were coded in C language and
run on a SUN SPARC 1000 workstation.

7. Conclusions

In this paper, we have developed a pseudo-
polynomial-time algorithm, the so-called depth-
first dynamic programming algorithm which
solves CSTP in #(nH) time, where n is the
total number of nodes and H is the given
capacity. Our research was motivated from
studying LATN design problem, an important
application problem in telecommunication sys-
tems. Since LATN design problem can be
solved by solving a series of CSTPs and our
depth-first dynamic programming algorithm has
we are able to develop a pseudopolynomial-
time algorithm for LATN design problem by
incorporating the solution procedure of our
depth-first approach for CSTP.

A Pseudopolynomial-time Algorithm for Solving 2 Caparitated Subtree of a Tree Problem in a Telecormunication System 497

Table 1. Computational results for comparing DP and CPLEX

DP CPLEX
n H . 1 T
: worst | average | best | worst |average| best | Nodes Z

s | Zoste
50 5,000 2.23 2.10 1.88 1.08; 082 0.61 42 2139.85 2101
10,000 460 . 449 4.38 1.50 | 1.15 0.81 43 3364.72 3343
100 ; 5,000 455 427 | 405 4.81 2.78 1.50 116 10522.20 10519
10,000 | 920 & 895 878 { 1342 | 583 345 83 11238.43 11220]
200 | 5,000 8.95 8.45 783 | 59.86 | 15.35 2.28 134 15837.52 15831
10,000 | 17.78 . 1762 | 17.18 | 2473 | 969 ' 1.70 127 19592.34 19590
300 | 5,000 13.03 | 1276 | 1242 | 58.24 | 33.45 117 | 143 18982.75 18977
10,000 } 27.38 : 2655 | 26.00 | 13661 | 4321 5.63 | 688 26196.04 26183
500 | 5,000 2257 | 21.83 | 2145 [10653 | 36.11 4.68 131 21547.52 21538

10,000 | 4642 @ 4519 | 4402 | 31852 | 6523 | 18.34 | 693 33332.82 33330

1 L

Nodes :the average number of nodes of decision tree generated from CPLEX
Z=s7s -the average optimai value of LP relaxation of CSTP
Zesrp the average optimal value of CSTP

References 1991,
[4] Balakrishnan, A., Magnanti, T.L., and
[1] Aghzzaf, EH., Magnant, T.L., and Wol- Wong, R.T.,“A Decomposition Algorithm
sey, L.A.,"Optimizing Constrained Subtree for Local Access Telecommunications Net-
of Trees,”Mathematical Programming, Vol works Expansion Planning,” Operations
71, pp.113-126, 1995. Research, Vol.43, No.1, pp.58-76, 1995.
[2] Ahuja, RK., Magnanti, T.L., and Ortin, J. [5) Cho, G. and Shaw, D.X.,“Limited Column
B., Network Flows, Prentice Hall, Inc. A Generation for Local Access Telecommun-
Simon & Schuster Co., Englewood Cliffs, ication Network Design,” Technical Report,
NI 07632, 1993. School of Industrial Engineering, Purdue
(3] Balakrishnan, A., Magnanti, T.L., Shulman, University, West Lafayette, Indiana, 1994,
A., and Wong, R.T.,"Models for Planning ~ [6] Comuejols, G., Nemhauser, G.L., and
Capacity Expansion’ in Local Access Wolsey, L.A.,"The Uncapacitated Facility
Telecommunications Networks,” Annals of Location Problem,” in: Discrete Location

Operations Research, Vol.33, pp.239-284, Theory, P.B. Mirchandani- & R.L. Fran-

498 Geon Cho

ciseds., John Wiley and Sons., 1990.

{7} Garey, M.R. and Johnson, D.S., Computers
and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman and
Co., San Francisco, 1979.

[8] Ibarra, O.H. and Kim, C.E.,” Approximation
Algorithms for Certain Scheduling Prob-
lems,” Mathematics of Operations Research,
Vol.3, pp.197-204, 1978

[9] Johnson, D.S. and Niemi, K.A.,“On Knap-
sacks, Partitions, and A New Dynamic
Programming Technique for Trees,”
Mathematics of Operations Research, Vol.
8, ppl-14, 1983

(10} Kariv, O. and Hakimi, S.L.“An Algo-

righmic Approach to Network Location
Problems I[: The p-medians,”SIAM J.
Appl. Math., vol.37, pp.539-555, 1979.
{117 Lukes, J.A.,“Efficient Algorithm for the
Partitioning of Trees,” IBM Journal of
Research and Development, vol.18, pp.

214-224, 1974,
[12] Magnanti, T.L. and Wolsey, L.A.,"Op-
timal Trees,” CORE Discussion Paper,
Research &
Economics, Universite Catholique De Lou-

Center for Operations
vain, Louvain-La-Neuve, Belgium, 1992

[13] Shaw, D.X.,*Refermulation and Column
Generation for Several Telecommunica-
tions Network Design Problems,” Techni-
cal Report, School of Industrial Engineer-
ing, Purdue University, West Lafayette,
Indiana, 1993.

[14] Shaw, D.X. and Cho, G.,“A Branch-and-
Bound Procedure for the Tree Knapsack
Problem,” Technical Report, School of
Industrial Engineering, Purdue University,
West Lafayette, Indiana, 1994.

95t 109 =x =, 96U 7E HE oF

