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Hierarchical Control Scheme in Flexible Manufacturing
Systems That have unreliable Machines and Maintenance
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Abstract

This paper describes an approach for the incorporation of maintenance
times into a hierarchical scheduling for o failure prone flexible manufacturing
system. The maintenance should not be performed too often because of the
resulting reduction of capacity. Most manufacturing systems are large and
complex. It is natural to divide the control into a hierarchy consisting of a
number of different levels. Each level is characterized by the length of the
planning horizon and the kind of data required for the decision making
process. The goal of the analysis reported here is to calculate the production
requirements while the machines foil and are repaired at random times. The
machine foilure and preventive maintenance are considered simultaneously.

1. Introduction

While the technology of manufacturing is
improving rapidly, a basic understanding of the
system’s issues remains incomplete. They are
production planning, scheduling, and control of
work in process. They are complicated by

randomness in the manufacturing environment

particularly dove to machine failures and other
events, including setups, preventive mainte-
nance, absences of raw materials, engineering
changes, training sessions for new personnel,
expedited batches, and many others.

We study systems involving many part types
that are disturbed by machine failures and
others. The basic idea is to keep track of the
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capacity of the system, as it varies over time
as machines fail and are repaired. It is
important to develop models and algorithms
which allow the FMS controller to generate
production schedules which satisfy demand
requirements and exercise control over the
system so that the output conforms to the
schedule.

Rishel[8] showed that the solution of the
optimization problem divides the coatinuous
part of the state space into regions. Associated
with each region is a different feedback law.
He describes an abstract dynamic programming
problem whose state has both a continuous and
a discrete component. Olsder and Suri[7]
proposed a dynamic programming model to
describe the disruptive nature of machine
failures. They represented machine repair states
with a set of discrete variables.

Kimemia and Gershwin[5] derived a closed
loop solution to the problem of dispatching
parts to machines in a failure prone FMS. They
found suboptimal strategies that are easy to
calculate and that provide satisfactory perfor-
mance. Formulation is modeled as a continuous
time, mixed state dynamic programming prob-
lem. The discrete constituent of the state (@)
is the vector of machine states, The other is
“he vector of surpluses (x), the cumulative
differences between production and demand.
The objective is to minimize these differences.
The production rate vector (u) is constrained
to be within a capacity set (Q(e)) that is
determined by the set of operational machines.

A feedback control law determines the

current production rate as a function of current
production surplus (u(x, @)). The solution of
dynamic program has two components. One is
the calculation of the cost to go function J(x,
). Since the calculation of J is performed
once, it is the longest term component of the
scheduling rule. The other is the calculation of
the control law, which requires J. The short
term portion of the scheduling rule is the
loading of parts in a way that agrees with the
curren{ production rates,

Maimen and Gershwin[6] found that the
hierarchy has three levels. At the top Kimemia
and Gershwin proposed a formulation which
had the minimization of the surplus. They
suggesied an approximation in which they
separated the solution of the Beliman equation
into @ number of subproblems. They approxi-
mated the value function J for each subprobiem
by a quadratic. The middle level of the
hierarchy is the maximum principle of an
optimal control problem. They showed that this
maximum principle is a linear programming
problem for the scheduling problem. The lower
level developed an algorithm to choose part
dispatch times to achieve flow rate u.

Akella, Gershwin, and Choong[l] led to
improvements at all three levels. At the top
level, the Bellman equation was replaced by a
far simple procedure to generate the quadratic
approximation for J. Because the behavior of
a manufacturing system is highly insensitive to

errors in the cost to go function. In the middle



level, they found & way to make use of the
quadratic approximation of J to eliminate the
_chattering phenomenon. For the part dispaich
level, they replaced Kimemia and Gershwin's
algorithm with one that was simpler and more
effective,

Akella and Kumar[2], Bielecki and Kumar
[3], and Sharifnia[9} obtained analytic solutions
for special cases of Kimemia and Gershwin’s
formulation. They analyzed unreliable manufac-
turing systems that produce only one part type.
Real manufacturing systems exhibit a much
richer catalog of events, including setups,
preventive maintenance, absences of raw ma-
terials, engineering changes, training sessions
for new personnel, expedited batches, and
many others,

This paper proposes a new modelling of
FMS that have unreliable machines and preven-
tive maintenance times. The general problems
of FMS are described in section 2. Overview
of hierarchical policy is explained in section 3.
Section 4 contains hierarchical flow control
with respect to FMS that has unreliable
machines. Finally section 5 suggests a real time
control model with respect to FMS that has
unreliable machines and preventive mainte-

nance times.

2. Problems of FMS

A flexible manufacturing system ( FMS ) is
an automated, batch manufacturing system

consisting of a set of numerically controlled
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mzchine tools with automatic tool interchange
capabilities. Design, planning, scheduling, and
control preblems of FMS involve some intricate
operations research problems. FMS design
problems include determining the appropriate
number of machine tools of each type, the
capacity of the material handling system, and
the size of buffers. FMS planning problems
contain part type selection, machine grouping,
product mix, resource allocation, and loading
problem. FMS scheduling problems are con-
cemned with running the FMS during real time
once it has been set up in the planning stage.
FMS control problems are those associated
with menitoring the system, keeping track of
preduction to be sure that requirements and due
dates are being met as scheduled.
Operational control of an FMS is very
complicated. It involves accessing large static
and dynamic data sets and complex control
algorithms. The control algorithms are struc-
tured hierarchically, where an upper level
issues commands to a lower level and gets
feedback on the achievement of these com-
mands. In order to make good decisions under
uncertainty, it is necessary 10 know something
about the current state of the system and to
use this information effectively. At the shortest
time scale, this includes the conditions of the
machines and the arnount of material already
processed. All the control functions necessary
for planning and executing manufacturing
activities in order to make products most

efficient have been grouped into a few large
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areas.

3. Overview of hierarchical policy

Operating policies for manufacturing systems
must repond to machine failures and other
important events that occur during production
such as setups, demand changes, expedited
batches, preventive maintenance, etc. Each of
these events takes up time at resource. Some
events are confrollable, others are not controll-
able but predictable. In this paper, we develop
hierarchical scheduling and planning algorithms,
The levels of the hierarchy correspond to
classes of events that have distinct frequencies
of occurrence,

Here, three kinds of events are considered.
They are production operations on parts,
failures and repairs of machines, and preventive
maintenances. Operations occur much more
often than failures, maintenence, and we can
use the continuous representation of material
flow. A dynamic programming formulation
based on this representation leads to a feedback
contrel pelicy. The state of the system has two
parts, One is a vector of real numbers (x(t))
that represents the surplus, the cumulative
difference between production and require-
ments, the other is a vector of integers ( o (1))
that represents the set of machines that are
operational, The object is to choose the
production rate vector (u(t)) as a function of
the state (x(t}} and (a(t)) to keep the surplus
(x{(t)) near 0.

The formulation of FMS control problem is

as a stochastic linear programming problem. A
set of constraints can be developed that say
that a part cannot arrive at a station until the
station has completed its previous operation.
The problem can be formulated as a stochastic
integer programming preblem. The major diffi-
culty with both of these formulations is the
very large number of variables. Large integer
programming problems are difficult and there
are no standard methods for the solution of
stochastic linear or integer programuning prob-
lems.

The purpose of the short term FMS schedul-
ing algorithm is to solve the following problem.
When should parts be dispatched into an FMS
with failore prone machines to satisfy produc-
tion requirements? Kimemia and Gershwin
decomposed the problem into two parts. The
one is a high level continuous dynamic
programming problem to determine the instan-
taneous production rates, the other is a
combinatorial algorithm to determine the
dispatch times at the bottom level.

A three level control hierarchy designed to
compensate for work station failures and
maintenance is proposed. The hierarchy is
illustrated in Figure 1.

Assume that the production requirements are
stated in the form of a demand rate vector d
(1). Let the instantaneous production rate vecior
be denoted u(t). Define x{(t) to be production
surplus. It is the cumulative difference between

production and demand and satisfies
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L) - d) (3.0)

If x(t} is positive, there is a inventory, and
i7 x(t) is negative, there is a backlog. A cost
g(x) representing both the inventory and
backlog costs can be assigned. The objective
of the policy is to compute production rates to
meet production targets while minimizing the
total cost.

The production rate vector u(t} is limited by
the capabilities of the machines. Let part type
J require iime 7, for all of its operations on

machine i. Then
Ll
STy < a () (3.2)
=1
where @ (t) is 1 if machine i is operational
and 0 if it is down. If there is a set of identical

type i machines, « (1) is the number of these

tkat are operational at time t.
ule) = 0. (3.3)
Inequalities {3.2) and (3.3) can be written as
wr) € Q[ a()] (3.4)

These requitements and constraints or the
production rates can be expressed as a dynamic

optimization problem as follows,

JIx(0), @ (0)] = mink | [ glx(0ldt | x(0),  (0) ]
(3.5)

subject to

% = () - dp)

E{ Tauft) < a o

uf) = 0. for all
given initial conditions x(0} and «(0)

The scheduling policy can be decemposed
into the three levels as follows
Top level: evaluation of J[x(0), «(0)] and
hedging point.
Middle level: compute the instantaneous pro-
duction rates.
Lower level: determine the actual part

- dispatch times.

4. Hierarchical flow control with failure
prone machine

Flow control problem is as follows. Given
an FMS, an initial surplus state x(t,) and
machine state o(t), we wish to find a
production plan for the time interval [t,, T] that

minimizes the performance index

Tt 09, 1= | | glcshds | xed, ¢ (2
(4.1

subject to

% = ule) - d(p) 4.2)
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Plels 8tem| a(d=nl= A, 0t foom>n  (4.3)
u(t) € R(a () (4.4)

where A, is called the generator transfor-
mation matrix.

The probability of having m resources
available at time t+ &t given that there were

n resources available at time t 15 A, Ot .

4.1 Cost 1o go function and hedging point

At the highest level of the control scheme
is the off-line calculation of the parameters of
the control policy to be used in the flow level.
If all problem data is known, this is required
only once: when a scheduling policy is
established. The function g(x(t)) penalizes the
controller for failing to meet demand and for
getting too far ahead of demand. The perfor-
mance index is thus the expected total penalty
incurred by the controller in the interval[t,, T].
The solution u(x, @, t ) of (4.1) ~ {(4.4) is the
optimal feedback control. We develop the
Beliman equation for this problem. Define the
optimal cost to go or value function J as

748, 20, = min || a0, o )
(45)

The cost to go is the expected total penalty
incurred by the controller for the remaining
time, given the buffer and machine states are
x(t) and @ (1) at time 1. The ideal production
policy would minimize the performance index

by producing parts at exactly the demand rate,
keeping the buffer state at zero. The hedging
point is the value of x that minimizes Jx, )
for a fixed o. Hedging point is the level to
which one builds up inventory to compensate
for future production losses due to machine
failures. In order to estimate the hedging point,
consider Figure 2, which demonstrates a typical
trajectory of x(t). If x(t) has reached H{ « (1)),
the hedging point corresponding to the machine
state before the failure, ther u(t) is chosen to

be demand d(t} and x(t) remains constant.

T
L7 Q\Vh s To+R+T;

Figure 2. Production surplus

A failure occurs at time t, that forces ufn)
t0 be zero. This causes x(t) to decrease at rate
-d{t). If failure lasts for a length of time T,
then the minimum value of x{1) is H{a)-d
(UT. And T, the repair time, is a random
variable. Just after the repair at time t,+ T, u,
(t) is assigned the maximum production rate.
Our objective is to obtain an approximation to
J . We can do this by choosing H to minimize
the total inventory cost in Figure 2.

The total inventory cost per cycle is
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J(Hj)=%{ -+ (-6 YA+ {6+ T+ Tf-rgJ

1
Hj+ i(t; -t)H;-dT) % {4.6)

We obtain

i (h+ 7y

4.7)

Where T, and T, are MTTR and MTBF,
Average inventory cost and shortage cost are
h and 7. Maximum preduction rate is u, and

d, is demand rate.

4.2 Production rate

In this level we describe a computationally
effective method of computing the instantane-
ous production rates. The optimal production
rate vector u(x, « ) satisfies linear programming

problem (4.8) at every time instant t
Minimize 22 (x, @ Ju (4.8)
ax
subject to
ue 20al)

Once the surplus reaches the hedging point,
the production rate is chosen to keep it there
as long as possible. We derive the control law
and calculate an optimal H that minimizes a
cost function. Then the optimal production rate

is

wr=0 if xO>H
uly=d if x()=H (4.9}
ult)=u if x{)(H

where H is hedging point, and # is maximum
preduction rate, and 4 is demand rate.

5. Real time control with failure and
maintenance

Many manufacturing systems can process
more than one kind of part. In most, a
important cost in time or money is incurred
each time a produciion resource is maintained
for the processing of a new part type afier it
has been used for another type. Maintenance
problem is fo decide when to stop the resource
from deoing its current operation, and which

part to making next.

5.1 Parameter calculation

At the highest level of the control scheme
is the off-line calculation of the parameters of
the control policy to be used in the flow level.
In order to calculate the hedging point we
consider Figure 3 as follows.

A maintenance begins at tme t; that forces
u(t) to be zero. This causes x(t) to decrease
at rate -d. If maintenance continues for a
length of time A-t, then the mimmum value of
x(t) is H{ @) - d{A-t,), A failure occurs at time
1, that forces again uft) to be zero. This causes
x(t) to decrease at tate -d(t). If failure lasts
for a length of time C-t, then the minimum
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t;: the starting point of maintenance

A: the ending point of maintenance

B: the next starting. point of maintenance
i the starting point of machine failure
C: the ending point of machine repair

Figure 3. Production surplus

value of x(t) is H{a)-d{C-t,). We can find
hedging point H to minimize the total inventory
cost in Figure 3. Just after the repair at time
to+ T, uft) is assigned the maximum produc-
tion rate. QOur objective is to obtain an
approximation to J. We can do this by choosing
H to minimize the tota] inventory cost in Figure
3

The total inventory cost per cycle is

L (H] L[ H

J(H)=hhHld—j]+§Hlﬁ +H(:r,+rf)]
1 H) 1H4T)
s g 25

(5.1)

We obtains

s + mIX 7a+ hd) - (w + mTJhedlus - d)
H-

Tns DUGT ) (5.2)

Where s is the mean maintenance time and

w is the mean time interval between consecu-
tive maintenances and T, T; are MTTR and
MTBF. Average inventory cost and shortage
cost are & and 7. Mean number of machine

failure during w is m.

5.2 Production rate calculation

Flow control level determines the short-term
production rates of each member of the part
family. The mix of parts being produced is
adjusted to take into account the random failure
states of the machines. The production rate is
such that x tends to a value H called the
hedging point. The formulation of dynamic

contrgl model 15 as follows

5.2.1 Medel notation
U,(t) = production rate of part n while
system is in state a
d, = demand rate of part n
x,{f) = the difference between cumulative
production and curnulative demand for
type n at time t
Yot} = the rate at which work-station m
performs operation k on part n
lma = the time that part n requires at machine
m while system is in state a
fep=the frequency that the system state
changes from a to b
A ;= the frequency that the systern state
changes from a to b while the system
state is a
545 = the time required to change sysiem state

fromatob
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w_ = the fraction of time that the system state

is a

5.2.2 Model assumptions

1) Materials is sufficient to the production
operation.

2) MTBF and MTTR are independent of the
rate of machine utilization,

3) Machines in the work-station are all
identical type and have the same opera-
tion times.

4) Changes of sysiem state are due to

machine failure and maintenance policy.

5.2.3 Flow Control Medel

We wish to find the optimal production rate
for each part type, the frequencies of mainte-
nance, and the fraction of time that the system
spends in each state. An optimization problem
has objective function that represents the cost

of surplus.

Minimize Hx,, o, Q)=

E| g0)ds | x(0) = xo, @ (@)= @q]  (5.3)
subject to
dx
— = 40 -d, (5.4)
Pla(t+ 0)=bialp=a)= A, 8¢t (55

T 3 bymatins = 1 for all a (5.6

d,= Twu,, for all a (5.7

n
a

fab= ;Labwa (5.8)
zwa+ z %Salfab: 1 (59)
A, =T A dw, forallaxb  (510)

(5.4) represents the dynamics of surplus x,
and {5.6) shows capacity constraints. In order
to satisfy demand, we must have (5.6).
Equation (5.8) represents the relationship be-
tween frequency f,, and z,, . The total system
time can be in any state or having its state
changed, we have (5.9). And in steady state,
we have (5.10)

5.2.4 Solution methodology

The solution of mode! is the optimal
feedback control we are seeking. We develop
the Bellman equation for this problem which
helps to characterize this function. While we
cannot solve the Bellman equation for any but
the simplest of problems, we can use its
properties 10 help derive practical pelicies for
realistic problems. With hierarchical flow con-
trol structure and optimal control theory we
can find the simple solution methodology.

The cost to go is the expected total penalty
incurred by the controller for the remaining
time, given that the buffer and machine states
are x and ¢ at the time t. We wish to specify
a production plan for f < r < £, that minimizes

the performance index

100, 0=E | 'gtats)ds 0y = x, )= @
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For any J't, this satisfies a partial differential

equation.

1150, 00,0= £ [ | gonds
+J e+ 80,0+ 80,1+ 01 ]

The production policies are feedback control
laws that give a feasible production rate for
each buffer and machine state in the interval
(t,, t). The “cost to go” minimization problem
satisfies Hamilton-Jacobi-Bellman equation. We
can consider that f“ L‘h(g'[.r(s)]ds = glx(] &+

'
r

We obtain the Taylor expansion.

LA, ale, = glx@] 0e+ T A, 805
[e+ 00 b0+ @+ (1+ 2,80 | JIx0), e, 1]

aJ0dn, alh, g _ al{de, a0,
+——--x0f+——-—-—6;'
2x 2

An optimal feedback control law v¥x, «, 1)

and the optimal cost to go J satisfy
al 2

Min{ glde)}+ —i;r*’{u-d) + —;;1+ E A K0, B, 1] J

The exact solution to the flow control
problem requires the solution of a coupled set
of differential equations. Only after solving the
continuous problem is the detailed discrete
problem treated. The detailed scheduling prob-
lem is then much easier than it would be if it

were treated without first solving the continu-

ous problem.

5.2.5 Numerical Example

Consider a manufacturing system that has
flexiblility with two different tools. The system
can make types 1 and 3 in system state 1, and
it can make types 1 and 2 in system state 2.
It takes one hour on the average to do
operation any part. We assume that the system
makes three part types in two system state.
The demands are d,=0.5, 4.=0.3,d,=0.7
parts per hour.

For system state 1, the capacity constraint is
oty <1 .

For system state 2, the capacity constraint is
Uit up =<1

If we treat the system in steady state, the
demand constraints are

Wil + whtty; = (1.5 for part type 1
Wit = 0.3 for part type 2
witty = 0.7 for part type 3

The steady state condition is zow, = zyws
because there are only two system states.

The normalization equation is

Wit Wat Sifin + Syfa = 1

22
will + ;*"‘ SuZpt $azp] =1
i

1 1
S0, let —+ —+ 5.4 5= @
Lz Zn

1
z

Then wi =22 and w,y= -2
o T
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From demand constraints we can get

1,1- 15(s1; + 521)
Ziz Zu

The results are as follows

Wr=W2=0.75
R S
1 u ]5(512 + 321)
L 9 6
Hi=T1s Hw=1s HeT i3 H2Tq3

It is the sum of the times s+ 5., that is
important. The system start in state | preducing
part type 1 and 3 at rate 11—5 and % pieces per
hour, The hedging point is derived by equation
(£.2). The system stays in state 1 for ﬁ
hours, and then change to state 2. The
production rate calculated here are averages
because we assumed that the system are under
numerous failures and repairs while it is in
ezch state. And those are requirements thae the

lower level must satisfy.
6. Conclusion

This paper suggests an approach to incorpo-
rating maintenance times into the hierarchical
control for unreliable FMS’s. The goal of the
control system is to meet production require-
ments while the machines fail and are repaired
at random times,

The control is organized in a hierarchical

structure according to the various decisions at

the different time scales. Here the formulation

of hierarchical scheduling and maintenance
probiem of FMS and the simple solution
methodology are suggested and the hedging
point of this model! is calculated.

Future work includes the development of the
lower level algorithms. The widely used
concept of hierarchical decomposition of
scheduling algorithms should be examined.
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