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Abstract

In this paper, we consider the problem of testing independence in the absolutely
continuous 'bivariate ‘exponential distribution of Block and Basu(1974). We
construct a bootstrap procedure for testing zero and non-zero values of the
parameter A; which measures the degree of dependence and compare the power

of the bootstrap test with likelihood ratio test(LRT) by Gupta et al.(1984) and the
test based on maximum likelihood estimator(MLE) /13 by Hanagal and Kale(1991)

for small and moderate sample sizes.

‘1. Introduction.

We consider a system . consisting of two components ( Cj,C,;) and let

F(x,9)=P(X>x,Y>y) where X and Y denote failure times of C, and C,
respectively. In general the component failure times X and Y may be dependent.

Marshall and Olkin(1967) proposed a bivariate exponential distribution as a model
for failure time distribution of a system with two components which can fail
simultaneously. This distribution however .is not absolutely continuous and ‘so
there are some situations ‘when this model is not appropriate. As an alternative
Block and Basu(1974) dropped the condition of exponential marginals and used the
loss of memory property to prdpose an absolutely continuous bivariate exponential
model. According to Block and Basu(1974) the failure times of the two

components ( Cy, Cy) are said to follow ACBVE ( 4;, A5, A3) if
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Flx,v=P(X>x, YD
= *‘(]T’L—AS exp{ —Ax —Ay—Asmax (x,¥)}

A .
-—"(A—li—/{—z)‘ exp { —Amax (x, )}, (11

where x, v > 0 4,45, 43 » 0 and A=A, +4, +A44

In the above modification of Marshall-Olkin model given by Block and
Basu(1974), the property that A;=( if and only if (X, Y) are independent i

preserved. The test of hypothesis A3=0 is therefore equivalent to testing o

independence of (X, ¥). The problem of tests ‘or independence in Marshall-Olkin
model has beer. studied in detail by Bemis, Bain and Higgins(1972) and
Bhattacharyya and Johnson(1973). In the case of Block and Basu model, Gupta
Mehrotra and Michalek(1984) obtained a likelthood ratio test(LRT) for Az=-{

when A;=A; are unknown. They derived the exact distribution of the LR
statistic under F. But it is verv difficult to find out the distribution of the LIVl

statistic under the alternatives. Hanagal and Kale(1991) derived a test using the
asymptotic normil distribution hased on maxinum  likelihood estimator(MLE) 4.
of Ay for My~ i3=0 against H; : Ay > 0 when A, and A, are unknown an
unequal. But the power performance of the test based on MLE ;[3 may be 1wy
good in small samples since the test statistic is often skewed and biased.

Efron(1979) inirially introduced the bootstrap method to assign the accuracy for
an estimator. General theory for bootstrap hypothesis testing is discussed brietly
by Hinkley(1988) during a survev of bootstrap methods, and at greater length by
Hinkely(1989). Tieran(1988) discussed pivoting in  the context of bootstrap
hypothesis testing. Hall and Wilson(1991) and Becher(1993) illustrated the two
guidelines of pivoting and sampling under null hypothesis by applying bootstrar:
tests to specific Jdata sets.

In this paper, we construct the bootstrap procedure for testing independernce
using hootstrap pivoting in the ACBVE model and compare the powers with the

LRT and the tesr based on the MLE /Af;\- via Monte Carlo simulation in small &

moderate sample:..
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2. Tests of Independence

Let (x;,3), (x3,y2), -, (x,,y,) be a random sample from the ACBVE
( A1, Az, A3) in (1.1). In this case, the marginal probability density function(pdf)

of X is given by
A=A ot G — M e (—ax), x> 0
XS = +,1:_€ X Ty A, X x 2.0

Similarly the marginal pdf of Y is given by

/1 Ag Ay ) /1 WA
( +A exp {— (A3+Ay} — PN exp{—Ay}, ¥ > 0. (2.2)

folw

Under the restriction of the identical marginals, A;= A, in (1.1), Gupta, Metrotra
and Michalek(1984) obtained the likelihood ratio statistic 7= R{1—R) for

H, : A3=0, where R- , wi=lx;—y] and v,= min(x;, y,).

ij

It

z 1

They showed that the ratio R has a beta (%, #) distribution under Hj : A3 = 0.

The test function of Gupta, Metrotra and Michalek(1984) is given by
1. if T<c¢

¢GMM(x, y) = [ 0’ Other.wisey (23)

where ¢, 0<c¢<1/4, is chosen so that P(T<c | Hy)=a.
Suppose that in o sample of size %, #; observations are such that x,{(y; and

ny=mn—mn, are such that x,=2y; Then the likelihood of the sample is given by

+/L>] . [&&Q A

AA
L(Al,AQ”13):[ (/‘ll +"/1‘))

exp{—A4; Z:]xi——/ig gly,-"/lg gl max(x,,v)}. (2.4)

Hence, the likelihood equations are as follows:

alogL(&/iAl,/iz,Aa) _- ﬁlxi+n/,1—n/(,11+~,12)+n1/,11+n2/(/1,+/13) = 0; (2.5)
1 i=
alOgL(/il,/lg,/{Q

EXN = — §1y1+n//1—n/(/11+/12) +n2//12+n1/(/12+/13) = 0; (2.6)
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A
PoBLUA08) — 3 max(, )+ WA+ Gl dg) +maf G +39) = 0. 27

We can solve the likelihood equations by Newton-Raphson method and obtain

MLE’s ( A,, A, A3). Hanagal and Kale(1991) obtained the Fisher information

matrix f(Ay,A5,4) =(1;) : (£,7)=1,2,3 given as

1112‘1—2“ L 7+ . T % 2
A (LAt A T (A A4 4
= 3 G AT T
=4 R uzjf/ig)” (/111:23)2 e Gy
[13=71?'+ (/11+/1;(2/11+/13)2’and 123:712_+ (A1+/12;1(1A2+/13)2'

The inverse of Fisher information matrix, I (A, 4s, A3)=(I") : (i,/)=1,2,3.

can be obtained from [(Ay, Ay, Ay) =(1;) : (4,)=1,2,3. For H,: A3=0, thev
. ~ o, 3 . . . .

proposed the test statistic \/; As/V I” which has asymptotic normal distributicn

with mean zero and variance one. For Hy: A;=0 vs H;: A3 > 0, the teut
function of Hanagal and Kale(1991) is given by

L, it Vas/VP )y 0 (1-a)

brrl, ) = { 0, otherwise ' (2.8)

where 1B is computed from I based on MLE's ( A, Az, 23) and @(-) s

the cumulative distribution function of standard normal.

3. A Bootstrap Test of Independence

In this section we consider the bootstrap test for Hy: A3=0 vs H;: A3 > 1)

based on pivoting for which the asymptotic distribution does not depend on an.
unknown parameters. Since the asymptotic distribution of the statisti-

Vo Ay/y f% under Hj does not depend on any unknown parameter, we will use
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the statistic based on \f}; 23/\/ j33 as pivoting. The bootstrap testing procedure
for Hy: A3=0 vs H;: A3 > 0 can be described as follows:

(1) Obtain the MLE's A, A, and A; by solving equations (2.5), (2.6) and (2.7)

simultaneously.
(2) Construct the sampling distribution function based on the MLE'’s, say,
ACBVE™ ( A, A5, 23).

(3) Generate B random samples of size # from fixed ACBVE'( A;, A, A3).

The corresponding samples called the bootstrap samples are denoted by
(2,910, 8,93, -, (2, 9D), b=1, 2, -, B.

(4) Construct the lkelihood equations (2.5), (26) and (2.7) based on bootstrap
samples, that is, for b=1,2,"-, B,

- ﬁlx?”w/ﬁ—n/( At A+’ 2+nd A+ ) =0 (3.1)
= 2yl A=l (At R+t Bt/ Ayt A5)=0 (32)
= 2 max(i’, v +uf A+n’/Chz+ A+ 3" A+ A =0, (33)

b - . .
where ;" is bootstrap version of #n; i=1, 2, 3.

(5) Solve the equations (3.1), (3.2) and (3.3) simultaneously and obtain solutions
'Y
1

A

Y] n xh . C . .
, Ay and A3 . And construct the Fisher information matrix based on

21*17, 2\2tb and ;{\B*h, say, I( ;ixl*b, jz*b, 23-&27) ::( fz;tb) : (Z.,j)=1,2,3.
Also, compute the inverse matrix of Fisher information, say,
P aox ok o L
e, AT A=) =123, b=1, 2, -, B
(6) Construct the bootstrap distribution function of \[;23/ y ® under Hy :

Ay = 0, say ﬁ*, as followings:
* B P ~ . E *
B (9= + AVl 37 AP "<s), (3.4)

where I( - ) is an indicator function and s is arbitrary real number.

Then we construct the bootstrap test function for Hy : A3=0 vs H;: A3 > 0
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as follows:

1. if Vai NP> o

XY= i ' !
oo, v) 0. otherwise o

where cp*= H l(1'-—a/)=inf{s: () = 1-a}.

4. Monte Carlo Simulation Studies

In this section we compare the powers of the above three tests at the levels
a= 0.05 and 0.1¢ by simulating 1000 samples each of sizes n=25, 10, 15 and 0
for the combination of wvalues of the parameters A;=A4,=0.05 and 0.10 &nd
A3==0.05, 0.10 and 0.15. These are presented in the Tables 1, 2 and 3.

We can summasiize the following facts by inspection of Tables 1, 2 and 3.

(1) For the most cases, the test @pzoor{(x, ¥} based on bootstrap procedure has the
best power performance and the second best is a large sample test ¢ yx(x, V)
based on Ml E. The worst case is the LRT éoudx, 3).

(2) The powers of all tests tend to increase as sample size increase. In particular,

the power of the test @poor{x, V) increases more quick than those of the teste
bom(x, ¥) and  duxlx, ¥).

(3) For fixed »,=A. and fixed sample size, the powers of all tests tend to
increase as the value of Ay increases.

(4) The powers of all tests tend to decrease as the common values of A;= A

increase.

Note that we used the restriction of marginai homogeneity for the comparis:or
purpose. But the bootstrap test itself has no such restriction by construction.
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<Table 1) The power of the tests dom(x, ), duxlx, y) and
¢BO()T(JC,.V) for HOI A3=O vVS. H] : /{3=005

AL =4y n a Pomx,¥) | Dux(x,¥) | dpoor(x, )
5 0.05 0.0500 0.1370 0.2110
) 010 | 00880 | 02490 | 02870
10 0.05 0.0750 0.1900 0.2460
i 000 | 01400 | 03240 | 0.3340
0.05 15 0.05 0.1040 0.2320 0.2610
B 0.10 0.1750 0.3570 0.3600
20 0.05 0.1060 0.2420 0.2600
0.10 0.1700 0.3750 0.3740
5 0.05 0.0180 0.0490 0.0540
~ 0.10 0.0530 0.1380 0.0910
10 0.05 (.0290 0.0390 0.0490
3 0.10 0.0590 0.0990 0.1020
0.10 15 0.05 0.0370 0.0440 0.0800
B 0.10 0.0790 0.0960 0.1260
20 0.05 (0.0350 0.0630 0.1130
| 010 | 0080 | 01200 | 01640

{(Table 2 The power of the tests damlx, ), duxlx,y) and
Spoor{x,¥) for Hy: A3=0 vs. H;: A3=0.10

A=Ay n a bomm(x, V) | durlx,3) | Dpoor(x, v)
5 0.05 0.1700 0.2500 0.3690
B 0.10 0.2550 0.4150 0.4450
10 0.05 (.3280 0.4650 0.5180
B 0.10 0.4270 0.5860 0.5850
0.05 15 0.05 0.5090 0.6230 0.6520
B 0.10 0.5940 0.7220 0.7160
20 0.05 0.6150 0.7110 0.7260
0.10 0.6810 0.7900 0.7900
5 0.05 0.0520 0.1050 0.2140
B 0.10 0.1000 0.2530 0.2820
10 0.05 0.0750 0.1700 0.2160
B 0.10 0.1230 0.2910 0.3000
0.10 15 0.05 0.0910 0.2170 0.2570
B 0.10 0490 | 03540 | 0.3580
20 0.05 0.1100 0.2650 0.2940
0.10 0.1900 0.3990 0.4020
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(Table 3) The power of the tests doum(x, ), dux(x, ) and
bpoor{x, ) for Hy: A3;=0 vs. H,: A;=0.15

A= A4 n @ b x, ¥) Sulx, ¥) | dpoor(x, )
5 005 | 0.2250 0.2840 0.4280
010 | 03200 | 0.4550 0.4960
10 005 | 05090 0.6160 0.6580
010 | 06100 | 06860 0.6880
0.05 15 0.05 | 0.6830 0.7390 0.7440
010 | 07210 | 0.7800 0.7800
20 005 | 07830 0.8140 0.8200
- 010 | 08100 0.8350 0.8340
5 0.05 | 01130 0.1880 0.2980
010 | 0J840 | 0.3390 0.3760 |
10 005 | 0.2300 0.3580 0.4120
010 | 03100 | 04910 05030 |
0.10 15 . 005 03100  0.4540 0.4900
010 | 03840 | 05820 0.5870
0 005 | 0.3480 05040 05230
B R 000 0.4420 1 06350 | 06330
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{Figure 1) Plot of the power against Aj
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