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Changes of paralytic shellfish toxin components and specific toxicity in blue mussel, Mytilus edulis and
oyster, Crassostrea gigas during canning process were investigated by high performance liquid
chromatography (HPLC). The mole% of the frozen shucked blue mussel were in order of 27.5 mole%
of gonyautoxin 1, 23.0 mole% of gonyautoxin 8 (C1) and 23.0 mole% of epigonyautoxin 8 (C2), while
those of the frozen shucked oyster were in order of 29 mole% of C1, 22 mole% of C2, 16.7 mole% of
gonyautoxin 2. Both samples had minor amounts of saxitoxin and neosaxitoxin. On the other hand, in
case of specific toxicity, the major toxins were consisted of gonyautoxin 1~4 in both sample. The
toxicity of gonyautoxin 1~4 were 88 and 84% in blue mussel and oyster, respectively. According to the
experimental results, C1, C2 and gonyautoxin 4 were very sensitive to heat treatment, while gonyautoxin
2 and saxitoxin were pretty heat resistant than any other toxin components.

Key words : paralytic shellfish toxin, toxin components, specific toxicity HPLC, gonyautoxin, saxitoxin,

neosaxitoxin

Introduction

Paralytic shelifish poison (PSP) has been a serious
problem for a long time in many parts of the world.
The sporadic and unpredictable outbreasks usually
cause serious health hazards and great losses to the
seafood industry. The toxins accumulate in shellfish
as a result of ingestion of toxic dinoflagellate. Saxito-
xin (STX), first isolated from Alaska butter clams,
Saxidomus giganteus and later from California mussels,
Mytilus californianus (Schantz et al,, 1957), was thou-
ght to be the only toxic principle produced by the

causative organism Gomyaulax catenella. Recent stu-

dies, however, have shown that the toxicity is caused
by a group of closely related compounds and that STX
did not ever constitute the major component in many
cases (Shimizu et al, 1975). More than 20 analogues
of STX have been reported to occur naturally, inclu-
ding the deoxydecarbamoy! group recently found in
the dinoflagellate Gymnodinium catenatum (Fig. 1,
Oshima et al, 1993).

In Korea, the toxins such as gonyautoxin (GTX) 1,
GTX2, GTX3 and GTX4 caused food poisoning acci-
dent in May, 1986 at Pusan (Chang et al, 1987) are
the major components in blue mussel, Mytilus edulis
and the toxins such as gonyautoxin (GTX) 1, GTX2,
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Fig. 1. Structure of paralytic shellfish toxins.

GTX3 and GTX4 are the major components and GTX8
(C1), ¢pi-GTX8 (C2), STX and neoSTX are the mi-
nor components in blue mussel, Mytilus edulis, at
Jinhae Bay (Lee et al,, 1992). However, comparison of
toxin components in blue mussel and oyster, and
change of toxin components during canning processing
have not been reported so far. In this study, we re-
port the toxin components in blue mussel and oyster
causing the death accident in May, 1996 at Woepori,
Koje, Korea (Sin-Kyengnam Ilbo, 1996), and change of
toxin components during canning processing were in-
vestigated.

Materials and Methods

Materials

Blue mussel, Mytilus edulis (toxicity, 8924 1g/100g)
and oyster, Crassostrea gigas (toxicity, 856 ug/100 g)
caused food poisoning accident were collected at
Woepori, Koje, on 18th, May, 1996.

Canning
Shell-stock blue mussel and oyster washed with
fresh water were steamed at 105C for 10 min., shuc-

ked and trimmed, respectively. The steamed meat
were smoked at 110C for 15 min, followed at 125C
for 15 min., next. The 60 g of smoked meat was pac-
ked in No. 3B of square can with 50 m! of cotton seed
oil and retorted at 115C for 70 min. (Smoked can).

Preparation of toxin extracts for HPLC analysis

Toxin extracts from blue mussel and oyster were
prepared according to the standard mouse bioassay
(heat homogenate with equal volume of 0.1 N HCI for
5min. and centrifuge or filter). The toxin extracts
were passed through a Sep-Pak C-18 cartridge co-
lumn (Waters) which had been washed and equilibra-
ted previously with 10 ml each of methanol and distil-
led water. The first 1.5ml of eluate was discarded,
the next 0.5 ml was collected in reservoir of an ultra-
filtration kit (Waters Ultrafree C3GC, 10,000 dalton
cut-off)and centrifuged at 5,000Xg for 5min.

HPLC analysis of toxin

Toxin analysis was carried out with post column
derivatization HPLC system of Ohsima (1995b). Three
mobile phases were used for different toxin groups.
Details of analytical HPLC conditions were shown in
Table 1.
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Table 1. Operating conditions for HPLC analysis of paralytic shellfish poisoning toxins

Parameter Condition of description

HPLC pump Hitachi L-6000 with a syringe-loading sample
injector (Rheodyne 7125)

Column Reversed-phase, C8-bonded silica gel, Develosil

Mobile phase
Flow rate
(a) For C1~Cdtoxins

(b) For GTX1 to GTXS,
dcGTX2 and dcGTX3

(c) For STX1, neoSTX * - -

and deSTX
Oxidizing reagent
Flow rate
Composition

Reaction

Acidifying reagent
Flow rate
Composition

Detector
Excitation
Emission

C8~5, 46X150mm (Nomura Chemical Co.)

0.8 ml/min.

Tetrabutylammonium phosphate (1 mM) adjusted
to pH 5.8 with acetic acid

Sodium 1-heptanesulfonate (2 mM) in 10 mM
ammonium phosphate, pH 7.1

Sodium 1-heptanesulfonate (2mM) in 30 mM
ammonium phosphate, pH 7.1-acetonitrile (100X5)

0.4 ml/min,

Periodic acid (7mM) in 50 mM potassium
phosphate buffer, pH 9.0

10m Teflon tubing (05 mm id) at 65C in
a water bath and at 85C in a dry oven

0.4 ml/min.

0.5M acetic acid

Fluoromonitor (Hitachi F-1050) with a 150-W xenon lamp
330 nm

390 nm

PSP standard toxin ‘

The standard STX, neoSTX, dcSTX, GTX1~5, dc-
GTX2~3 and C1~4 were obtained from Ph. D. Yasu-
katu. Oshima (Tohoku University, Sendai, Japan).

Results and Discussion

Changes of toxin components during canning
process

Analysis of toxin components from blue mussel du-
ring canning process were shown in Table 2. GTX 1
(275 mole%) was predominant toxin components in
the frozen shucked blue mussel, followed GTX 8 (C1,

23.0mole %) and epi-GTX 8, (C2, 23.0 mole% ). While
the frozen shucked oyster contained large proportion
of C1(29 mole%) and C2 (22 mole% ), followed GTX
2(16.7 mole%) as shown in Table 3. Both samples
showed the presence of minor amounts of STX and
neoSTX. After steaming, it was found that the mole %
of C2:Cl, GTX4:GTX1 and GTX3:GTX2 were
changed close to 1:3 ratio. These results indicated
that epimerization between S-epimer (GTX3, GTX4, C
2, C4) and c-epimer (GTX2, GTX1, C1, C3) occured
during steaming. Toxins having a hydroxysulfate
moiety at position 11 undergo epimerization through
keto-enol equilibration (Shimizu, 1984). The equilibra-
tion was accelerated at higher pH and higher temper-
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Fig. 2. HPLC chromatograms of GTX fractions in blue mussel during smoking canning process.

A, shucked blue mussel;
D, steamed blue mussel;

G, canned blue mussel; H, soup;

ature, and N-sulfocarbamoyl toxin group equilibrated
much faster than the carbamate group. The biosyn-
thesis product of the dinoflagellates was thought to be
B-epimer (GTX3, GTX4, C2, C4), since only this epi-
mer group was detected in active growing cells
(Oshima et al, 1992). In toxins transmitted to shell-
fish, epimerization proceeds gradually, until it reaches
equilibrium at a B . a ratio close to 1: 3. Thus, the
relative ratio of epimers provide information on how
long toxins have been retained by shellfish (Oshima,
1995a).

Change of specific toxicity during canning pro-
cess

STX (497ug/umole) had the highest specific toxi-
city, followed GTX1 (494 pg/pmole) and neoSTX (459
pg/umole). The specific toxicity and its change of to-
xin components from blue mussel and oyster during
canning process were shown in Table 4, 5 and Fig.
2~5. The majority of the toxin present consisted of
gonyautoxin 1~4 in both sample. The toxicity of

B, thawed blue mussel;
E, steamed broth;

C, drip;
F, smoked blue mussel;
I, standard GTX toxins

gonyautoxin 1~4 were 88% and 84% in blue mussel
and oyster, respectively. On the other hand, dcSTX
was appeared newly, and the specific toxicities of dc-
GTX2 and dcGTX3 were increased after steaming and
retorting (Table 4 and 5). These results seemed to N-
sulfocarbamoyl toxin group was easily hydrolyzed at
neutral pH, but yielded decarbamoyl derivatives at a
different position (Oshima, 1995a). Increase of STX's
specific toxicity was due to the decrease in the N-OH
toxin group (GTX1, GTX4 and neoSTX) accompanied
by an increase in the N-H toxin group (GTX2, GTX3
and STX). It was found that the specific toxicity of C
1, C2 and GTX4 were decreased first with retorting,
followed by GTX 1 and GTX 3 (Fig. 2 and 3). STX
and dcSTX, however, kept the high specific toxicity
after retorting (Fig. 4 and 5).

From above results, In case of mole%, the major
components of PSP toxin in blue mussel and oyster
in Weopori, Koje, Korea, were C1, C2, GTX1 and GTX
2. While, in case of specific toxicity, the major toxin
components were GTX1~4 in both sample. We, the-
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Fig. 3. HPLC chromatograms of GTX fractions in oyster during smokmg canning process.

A, shucked oyster
D, steamed oyster;
G, canned oyster;
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Fig. 4. HPLC chromatograms of GTX fractions in blue mussel during smoking canning process.
A, shucked blue mussel
D, steamed blue mussel;
G, canned blue mussel;

B, thawed blue mussel;
E, steamed broth;
H, soup;
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Fig. 6. HPLC chromatograms of GTX fractions in
A, shucked oyster B, thawed oyster;
D, steamed oyster; E, steamed broth;
G, canned oyster; H, soup;

refore, found that the origins of toxins causing the
death accident were GTX1~4.

We found also that STX and dcSTX were the most
thermostable toxin among all toxin components from

retaining the high specific toxicity after retorting,
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