참고문헌
- Allman, D.J. (1984), "A compatible triangular element including vertex rotations for plane elasticity analysis", Comp. and Struct., 19(2), 1-9. https://doi.org/10.1016/0045-7949(84)90197-4
- Allman, D.J. (1984), "A compatible triangular element including vertex rotations for plane elasticity analysis", Comp. Struct., 19(1-2), 1-8. https://doi.org/10.1016/0045-7949(84)90197-4
- Allman, D.J. (1988), "A quadrilateral finite element including vertex rotations for plane elasticity problem", Int. J. Numer. Methods Eng., 26, 717-739. https://doi.org/10.1002/nme.1620260314
- Choi, C.K. and Lee, N.H. (1993), "Three dimensional solid elements for adaptive mesh gradation", Structural Engineering and Mechanics, 1(1), 61-74. https://doi.org/10.12989/sem.1993.1.1.061
- Choi, C.K. and Lee, W.H. (1995), "Transition membrane elements with drilling freedom for local mesh refinements", Structural Engineering and Mechanics, 3(1), 75-89. https://doi.org/10.12989/sem.1995.3.1.075
- Choi, C.K. and Chung, K.Y. (1995), "Three dimensional variable node solid element with drilling degrees of freedom", Proceedings of 6th International Conference on Computing in Civil and Building Eng., Berlin, Germany, 12-15 July, 1, 521-528.
- Cook, R.D. (1986), "On the allman triangle and related quadrilateral element", Comp. Struct, 22(6), 1065-1067. https://doi.org/10.1016/0045-7949(86)90167-7
- Cook, R.D. (1987), "A plane hybrid element with rotational D.O.F. and adjustable stiffiness", Int. J. Numer. Methods Eng., 24, 1499-1500. https://doi.org/10.1002/nme.1620240807
- Hughes, T.J.R. and Brezzi, F. (1989), "On drilling degrees of freedom", Comp. Methods Appl. Mech. Eng., 72, 105-121. https://doi.org/10.1016/0045-7825(89)90124-2
- Ibrahimbegovic, A. and Wilson, E.L. (1991), "Thick shell and solid finite elements with independent rotation fields", Int. J. Numer. Methods Eng., 31, 1393-1414. https://doi.org/10.1002/nme.1620310711
- Ibrahimbegovic, A. and Wilson, E.L. (1991), "A modified method of incompatible modes", Communications in applied Numerical Methods, 7, 187-194. https://doi.org/10.1002/cnm.1630070303
- Ibrahimbegovic, A. and Wilson, E.L. (1991), "A modified mothod of incompatible modes", Communications in applied Numerical Methods, 7, 187-194. https://doi.org/10.1002/cnm.1630070303
- Irons, B. and Ahmad, S. (1980), Techniques of Finite Elements, Ellis Horwood, Chichester, UK.
- MacNeal, R.H. and Harder, R.L.O. (1985), "A proposed standard set of problems to test finite element accuracy", Finite Elements in Analysis and Design, 1, 3-20. https://doi.org/10.1016/0168-874X(85)90003-4
- MacNeal Richard, H. and Harder Robert, L. (1988), "A refined four-noded membrane element with rotational degrees of freedom", Comp. Struct, 28(1), 75-84. https://doi.org/10.1016/0045-7949(88)90094-6
- Pawlak, Timothy P., Yunus, Shah M. and Cook, R.D. (1991), "Solid elements with rotational degrees of freedom: part II-tetrahedron elements", Int. J. Numer. Methods Eng., 31, 593-610. https://doi.org/10.1002/nme.1620310311
- Reissner, E. (1965), "A note on variational theorems in elasticity", Int. J. solids and Structures, 1, 93-95. https://doi.org/10.1016/0020-7683(65)90018-1
- Timoshenko, S.;Goodier, J.N. (1951), Theory of Elasticity. McGraw-Hill, New York.
- Wilson, E.L. and Adnan, Ibrahimvegovic (1990), "Use of incompatible displacement modes for calculation of element stiffness or stresses", Finite Element in Analysis and Design, 7, 229-241. https://doi.org/10.1016/0168-874X(90)90034-C
- Yunus, Shah M., Pawlak, Timothy P. and Cook, R.D. (1991), "Solid elements with rotational degrees of freedom: part I-hexahedron elements", Int. J. Numer. Methods Eng., 31, 573-592. https://doi.org/10.1002/nme.1620310310
- Yunus, Shah M., Saigal, Sunil and Cook, Robert, D. (1989), "On improved hybrid finite elements with rotational degrees of freedom", Int. J. Numer. Methods Eng., 28, 785-800. https://doi.org/10.1002/nme.1620280405
피인용 문헌
- A hybrid 8-node hexahedral element for static and free vibration analysis vol.21, pp.5, 2005, https://doi.org/10.12989/sem.2005.21.5.571
- A direct modification method for strains due to non-conforming modes vol.11, pp.3, 2001, https://doi.org/10.12989/sem.2001.11.3.325
- Mixed formulated 13-node hexahedral elements with rotational degrees of freedom: MR-H13 elements vol.11, pp.1, 2001, https://doi.org/10.12989/sem.2001.11.1.105
- Finite element linear and nonlinear, static and dynamic analysis of structural elements – an addendum – A bibliography (1996‐1999) vol.17, pp.3, 2000, https://doi.org/10.1108/02644400010324893