References
- Anderson, M.S. (1981), "Buckling of periodic lattice structures", AlAA J., 19(6), 782-788.
- Anderson, M.S. (1982), "Vibration of prestressed periodic lattice structures", AlAA J., 20(4), 551-555.
- Anderson, M.S. and Williams, F.W. (1986), "Natural vibration and buckling of general periodic lattice structures", AlAA J., 24(1), 163-169.
- Anderson, M.S. and Williams, F.W. (1987), "BUNVIS-RG: Exact frame buckling and vibration program, with repetitive geometry and substructuring", J. Spacecraft and Rockets, 24(4), 353-361. https://doi.org/10.2514/3.25924
- Balasubramanian, P., Suhas, H.K. and Ramamurti, V. (1991), "Skyline solver for the static analysis of cyclic symmetric structures", Comp. and Struct., 38(3), 259-268. https://doi.org/10.1016/0045-7949(91)90104-T
- Capron, M.D. and Williams, F.W. (1988), "Exact dynamic stiffnesses for an axially loaded uniform Timoshenko member embedded in an elastic medium", J. Sound Vib., 124(3), 453-466. https://doi.org/10.1016/S0022-460X(88)81387-7
- Capron, M.D., Williams, F.W. and Symons, M.V. (1987), "A parametric study of the free vibrations of an offshore structure with piled foundations", Proc. Int. Conf. on Steel and Alum. Structs.: Steel Structs., Cardiff, 653-664. (Elsevier Applied Science, London).
- Henry, R. and Ferraris, G. (1983), "Substructuring and wave propagation: an efficient technique for impeller dynamic analysis", ASME Trans., Paper No. 83-GT-150, 28th Int. Gas Turbine Conf. and Exhibit, Phoenix, Arizona. 27-31 March.
- Howson, W.P., Banerjee, J.R. and Williams, F.W. (1983), "Concise equations and program for exact eigensolutions of plane frames including member shear", Adv. Eng. Software, 5(3), 137-141. https://doi.org/10.1016/0141-1195(83)90108-0
- Jemah, A.K. and Williams, F.W. (1990), "Compound stayed column for use in space", Comp. and Struct., 34(1), 171-178. https://doi.org/10.1016/0045-7949(90)90311-O
- Leung, A.Y.T. (1980), "Dynamic analysis of periodic structures", J. Sound Vib., 72(4), 451-467. https://doi.org/10.1016/0022-460X(80)90357-0
- Lunden, R. and Akesson, B.A. (1983), "Damped second-order Rayleigh-Timoshenko beam vibration in space-an exact complex dynamic member stiffness matrix", Int. J. Num. Meth. Engng, 19(3), 431-449. https://doi.org/10.1002/nme.1620190310
- MacNeal, R.H., Harder, R.L. and Mason, J.B. (1973), "NASTRAN cyclic symmetry capability", NASTRAN Users Experience-3rd Coll., NASA TM X-2893. 395-421.
- McDaniel, T.J. and Chang, K.J. (1980), "Dynamics of rotationally periodic large space structures", J. Sound Vib., 68(3), 351-368. https://doi.org/10.1016/0022-460X(80)90392-2
- Thomas, D.L. (1979), "Dynamics of rotationally periodic structures", Int. J. Num. Meth. Engng, 14(1), 81-102. https://doi.org/10.1002/nme.1620140107
- Wildheim, S.J. (1981), "Dynamics of circumferentially periodic structures", Doctoral Thesis, Linkoping Univ., Sweden.
- Williams, F.W. (1986a), "An algorithm for exact eigenvalue calculations for rotationally periodic structures", Int. J. Num. Meth. Engng, 23(4), 609-622. https://doi.org/10.1002/nme.1620230407
- Williams, F.W. (1986b), "Exact eigenvalue calculations for structures with rotationally periodic substructures", Int. J. Num. Meth. Engng, 23(4), 695-706. https://doi.org/10.1002/nme.1620230411
- Williams, F.W. and Wittrick, W.H. (1983), "Exact buckling and frequency calculations surveyed", J. Struct. Engng ASCE, 109(1), 169-187. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:1(169)
- Wittrick, W.H. and Williams, F.W. (1971), "A general algorithm for computing natural frequencies of elastic structures", Q.J. Mech. Appl. Math., 24(3), 263-284. https://doi.org/10.1093/qjmam/24.3.263
- Wittrick, W.H. and Williams, F.W. (1973a), "An algorithm for computing critical buckling loads of elastic structures", J. Struct. Mech., 1(4), 497-518. https://doi.org/10.1080/03601217308905354
- Wittrick, W.H. and Williams, F.W. (1973), "New procedures for structural eigenvalue calculations", 4th Australasian Conf. on the Mechanics of Structures and Materials, U. of Queensland, Brisbane, Queensland, Austalia, 299-308.
Cited by
- A Reduced-Order Model of Detuned Cyclic Dynamical Systems With Geometric Modifications Using a Basis of Cyclic Modes vol.132, pp.11, 2010, https://doi.org/10.1115/1.4000805
- Optimal design of infinite repetitive structures vol.18, pp.2-3, 1999, https://doi.org/10.1007/BF01195995