References
- Chucheepsakul, S., Buncharoen, S., and Wang, C.M. (1994), "Large deflection of beams under moment gradient," J. Engrg. Mech., ASCE, 120(9), 1848-1860. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:9(1848)
- Chucheepsakul, S., Buncharoen, S., and Huang, T. (1995), "Elastica of simple variable-arc-length beam subjected to end moment," J. Engrg. Mech., ASCE, 121(7), 767-772. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:7(767)
- Conway, H. D. (1947), "The large deflection of a simple supported beam," Phil. Mag., Series 7, 38, 905-911. https://doi.org/10.1080/14786444708561149
- Fertis, D.G. and Afonta, A. (1990), "Large deflection of determinate and indeterminate bars of variable stiffness," J. Engrg. Mech., ASCE, 116(7), 1543-1559. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:7(1543)
- Frisch-Fay, R. (1962), Flexible bars, Butterworths, London, England.
- Gospodnetic, D. (1959), "Deflection curve of a simple supported beam," J. Appl. Mech., 26(4), 675-676.
- Kempf, J. (1987), Numerical software tools in C, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, N.J.. 178-180.
- Nelder, J. A. and Mead, R. (1964), "A simplex method for function minimization," Comp. J., 7, 308-313.
- Prathap, G. and Varadan, T. K. (1975), "Large deformation of simply supported beam," J. Engrg. Mech. Div., ASCE, 101 (EM6), 929-931.
- Schile, R. D. and Sierakowski, R. L. (1967), "Large deflection of a beam loaded and supported at two points," Int. J. Non-linear Mech., 2, 61-68. https://doi.org/10.1016/0020-7462(67)90019-4
- Theocaris, P. S. and Panayotounakos, D. E. (1982), "Exact solution of the nonlinear differential equation concerning the elastic line of a straight rod due to terminal loading," Int. J. Non-linear Mech., 17(5/6), 395-402. https://doi.org/10.1016/0020-7462(82)90009-9
- Timoshenko, S. P. and Gere, J. M. (1961), Theory of elastic stability, McGraw-Hill Book Co., Inc., New York, N. Y., 79-80.
- Wang, C. M. and Kitipornchai, S. (1992), "Shooting-optimization technique for large deflection analysis of structural members," Engrg. Struct., 14(4), 231-240. https://doi.org/10.1016/0141-0296(92)90011-E
- Wang, T.M. (1968), "Nonlinear bending of beam with concentrated loads," J. of Franklin Institute, 285, 386-390. https://doi.org/10.1016/0016-0032(68)90486-9
Cited by
- Analytical and Experimental Studies on the Large Amplitude Free Vibrations of Variable-Arc-Length Beams vol.11, pp.7, 2005, https://doi.org/10.1177/1077546305054858
- A New Quasi-Linearization Finite Difference Scheme for Large Deflection Analysis of Prismatic and Non-Prismatic Inextensible Slender Beams vol.9, pp.2, 2006, https://doi.org/10.1260/136943306776986949
- Effect of inclination on bending of variable-arc-length beams subjected to uniform self-weight vol.30, pp.4, 2008, https://doi.org/10.1016/j.engstruct.2007.04.010
- Finite-Element Solution of Variable-Arc-Length Beams under a Point Load vol.123, pp.7, 1997, https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(968)
- Exact post-buckling configurations of cantilevered column subjected to forces produced by a tensioned cable vol.34, pp.4, 2007, https://doi.org/10.1016/j.mechrescom.2007.03.001
- DIVERGENCE INSTABILITY OF VARIABLE-ARC-LENGTH ELASTICA PIPES TRANSPORTING FLUID vol.14, pp.6, 2000, https://doi.org/10.1006/jfls.2000.0301
- On the Free Vibrations of Variable-Arc-Length Beams: Analytical and Experimental vol.132, pp.5, 2006, https://doi.org/10.1061/(ASCE)0733-9445(2006)132:5(772)
- Double Curvature Bending of Variable-Arc-Length Elasticas vol.66, pp.1, 1999, https://doi.org/10.1115/1.2789173
- Elastica of a variable-arc-length circular curved beam subjected to an end follower force vol.49, 2013, https://doi.org/10.1016/j.ijnonlinmec.2012.10.002
- Elastica and buckling load of simple tapered columns with constant volume vol.37, pp.18, 2000, https://doi.org/10.1016/S0020-7683(99)00007-4
- Effect of Material Nonlinearity on Large Deflection of Variable-Arc-Length Beams Subjected to Uniform Self-Weight vol.2012, 2012, https://doi.org/10.1155/2012/345461
- Large deflection behavior of a flexible circular cantilever arc device subjected to inward or outward polar force vol.22, pp.4, 2006, https://doi.org/10.12989/sem.2006.22.4.433
- Large deflections of spatial variable-arc-length elastica under terminal forces vol.32, pp.4, 2009, https://doi.org/10.12989/sem.2009.32.4.501
- Exact solutions of variable-arc-length elasticas under moment gradient vol.5, pp.5, 1996, https://doi.org/10.12989/sem.1997.5.5.529