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The Predation Impact by the Heterotrophic Dinoflagellate
Protoperidinium cf. divergens on Copepod eggs in the
Presence of Co-occurring Phytoplankton prey

. HAE JIN JEONG :
Marine Life Research Group 0218, Scripps Institution of Oceanography,
University of California, San Diego, La Jolla, California 92093-0218

I investigated the predation impact by the heterotrophic dinoflagellate Protoperidinium cf. divergens on
copepod eggs in the presence of co-occurring phytoplankton prey (a preferred red-tide dinoflagellate
Gonyaulax polyedra) and the selective feeding on mixtures of both prey. The ingestion rates of P. cf.
divergens on Egg N (unidentified round copepod eggs with a smooth surface, about 80 in diameter) de-
creased by only 1.7-2 times when mean G. polyedra concentration increased by 57-115 times. In mixed
prey experiments, P. cf. divergens preferred Egg N over G. polyedra even at 1.1 pgC ml”* or 470 celis ml"
of the latter. A strong preference of P. cf. divergens for Bgg N over G. polyedra can be responsible for
this relatively small effect. Protoperidinium may sometimes have a considerable predation impact on the
populations of Egg N even during phytoplankton blooms or red-tide periods.

INTRODUCTION

Species in the genus Protoperidinium are ubiqui-
tous heterotrophic dinoflagellates in the world ocean
(Lessard and Rivikin, 1986; Ochoa and G-mez,
1987; Stoecker et al. 1993). They often dominate
the biomass of heterotrophic dinoflagellates (20 -
200 um in size) in coastal (Jacobson, 1987) and
oceanic waters (Lessard, 1984). They are present all
year in the coastal waters off southern California
and possibly most areas (Allen, 1949; Lessard and
Rivikin, 1986, Hallegraeff and Reid, 1986) and are
often particularly abundant during red tides of au-
totrophic dinoflagellates (Allen, 1949; Jeong, 1995)
or during diatom blooms (Jacobson 1987). Several
studies (Allen, 1949; Paasche and Kristiansen, 1982;
Dale and Dahl, 1987; Jacobson, 1987) reported
abundanczes>20 Protoperidinium ml” in phytop-
lankton blooms or red-tide periods.

Protoperidinium is believed to play important
roles in food webs in plankton community because

it has a very broad range of prey species and can be
an important prey for macrozooplankton (Jeong,
1994a). Protoperidinium has been observed to prey
on diatoms (Hansen, 1992; Jacobson and Anderson;
1993, Buskey er al, 1995), autotrophic dinofla-
gellates, con-specific cells (Hansen, 1991, Jeong
and Latz, 1994, Latz and Jeong, 1996), copepod
eggs and early naupliar stages (Jeong, 1994b), and
detritus (Jeong, personal observation).

My previous studies (Jeong, 1994a, 1994b) show-
ed that a free-living Protoperidinium, which is prey
for adult copepods, is also an important potential
predator on copepod eggs and early naupliar stages.
In the latter study (Jeong, 1994b) I suggested that
Protoperidinium may sometimes have a con-
siderable predation impact on the populations of co-
pepod eggs, based on estimated daily consumption
of eggs by Protoperidinium when eggs were the
only prey.

When a very broad range of prey species is con-
sidered, Protoperidinium seems to be a voracious
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and non-selective feeder. An important further ques-
tion therefore is whether Protoperidinium has a con-
siderable predation impact on the populations of co-
pepod eggs even when the concentrations of co-oc-
curring algal prey are high, i.e. in phytoplankion
blooms or red-tide periods. The answer depends on
whether predation by Protoperidinium on eggs is
significantly affected by the presence of co-oc-
curring algal prey, and whether Proftoperidinium
can select eggs over co-occurring algal prey. The
precapture behavior of Protoperidinium, which in-
volves spinning around a target prey cell (Jacobson
and Anderson, 1986), might permit prey selection,
and Jeong and Latz (1994) found a strong selective
feeding of Protoperidinium between two red-tide di-
noflagellates.

The objectives of this study were to test the fol-
lowing hypotheses;

Hyl : The predation rate of Protoperidinium on
copepod eggs is independent of the presence of co-
occurring algal prey.

Hy2 : Protoperidinium do not distinguish between
(i.e. do not have a preference for) copepod eggs and
co-occurring algal prey. :

MATERIALS AND METHODS
Preparation of experimental organisms

Gonyaulax polyedra Stein, known as the best red-
tide dinoflagellate prey for Protoperidinium cf.
divergens (Ehrenberg) Balech (Jeong and Latz,
1994), was grown in enriched f/4 seawater media
(Guillard and Ryther, 1962) without silicate, at
room temperature (20-23°C) with continuous il-
lumination of 100 uE m”s” of cool white fluore-

scent lights. Cultures in exponential growth phase
were used for feeding experiments.

A dense population of cultured Protoperidinium
cf. divergens, originally collected from the Scripps
pier (La Jolla, California, USA) during October,
1994, was used for these experiments. Details of cul-
turing this species are described by Jeong and Latz
(1994).

Copepods were collected from the coastal waters
off La Jolla Bay, CA using a 303 um mesh net. The
copepods (several species) were placed 2 four liter
jars with mixtures of Scrippsiella trochoidea and
Gymnodinium sanguineum. Eggs were also col-
lected from jars every day and sieved by 70 and 90
pm mesh nets. Unidentified round eggs (about 80
pm in diameter, hereafter Egg N) with a smooth sur-
face and very thin-yellowish contents (no empty
space between the outer surface layer and contents)
were collected with a Pasteur micropipette in a mul-
tiwell chamber under a dissecting microscope and
also kept at 0°C in the dark.

Egg N had been kept at 0°C in the dark for 3 days
before used for Experiments 1 and 2 (see Table 1),
to prevent them from hatching to nauplii during in-
cubation (Jeong, 1994b). In the present entire ex-
periments, no egg hatched to a nauplius.

Experimental designs

The initial densities of the predator and prey are
given in Table 1. Experiments 1 and 2, where the in-
itial concentration of Egg N was fixed, while that of
Gonyaulax polyedra varied in each experiment,
were designed to test the hypotheses (H,1 and H,2)
stated previously.

Dense cultures of Protoperidinium cf. divergens

Table 1. Design of experiments. The numbers in prey and predator columns are the initial densities of prey and predator

. Prey Predator
Experiment 7 i n
No T . L 1 rotoperidinium cf.
Species in mixtures Initial density (inds. ml™) divergens (inds. ml")
1 “Egg N 0.38 10, 14.5
Gonyaulax polyedra 6.8, 12.1, 29.0, 98.3, 517.1
2 Egg N 0.75 10
G. polyedra 8.4, 13.0, 295, 96.9, 475.6

*Egg N: Unidentified round copepod eggs (about 80 um in diameter, hereafter Egg N) with a smooth surface.
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were sieved through 54 um mesh; the large cells re-
tained were transferred to a multiwell chamber.
Most P. cf. divergens sieved recovered their normal
swimming ability within 30 minutes. In all ex-
periments, the initial concentrations of P. cf. diver-
gens and eggs were obtained by individual transfer
with a Pasteur micropipette into 32ml polycar-
bonate (PC) bottles under a dissecting microscope.
In experiment 1, 320 P. cf. divergens (10 Pro-
toperidinium ml™) for 6.8 Gonyaulax polyedra ml’
and about 460 (14.5 Protoperidinium mi™) for other
prey concentrations were added to the 32 ml PC bot-
tles. In experiments 1 and 2, three 1 ml aliquots of a
G. polyedra culture were counted to determine con-
centration. G. polyedra concentrations was obtained
by volume conversion with an autopipette. Du-
plicate experiment bottles in experiments 1 and 2
were set up. In experiments 1 and 2, triplicate con-
trol bottles contained only G. polyedra and Egg N
at all prey concentration combinations. To deter-
mine actual initial G. polyedra concentrations, the
concentration of one control bottle at each prey con-
centration combination was measured by counting
all cells for two initial concentrations of 6.8-13.0 G.
polyedra ml” and more than 200 cells for the other
concentrations in multiwell chambers by removal of
individual cells with a Pasteur micropipette.

Experimental and control bottles were placed on
rotating wheels at 0.9 RPM under dim light at 19°C
for 14-17 (in experiment 1) or 14-22 (experiment 2)
hours.

Ingestion rates, and mean prey and predator con-
centrations were calculated using Frost's (1972) and/
or Heinbokel's (1978) equations. Following in-
cubation, the final concentrations of Protoperi-
dinium cf. divergens were measured by counting
cells in a 8 ml aliquot from bottles by removal of in-
dividual cells with a Pasteur micropipette. The final
concentrations of eggs were measured by counting
all eggs in multiwell chambers. In experiments 1
and 2, the final concentrations of G. polyedra were
measured by counting all cells for the initial con-
centrations of 6.8-13 G. polyedra ml” and more
than 200 cells for the other concentrations.

Carbon contents for Gonyaulax polyedra (2.3

ngC per cell) were estimated from cell volume ac-
cording to Strathmann (1967) and for Egg N (45
ngC per egg) were obtained from Kigboe et al.
(1985).

Test of hypotheses

In experiments 1 and 2, the initial concentration
of Egg N was fixed, while that of Gonyaulax po-
Iyedra varied in each experiment (Table 1). If inges-
tion rates of Egg N by Protoperidinium cf. diver-
gens on at one G. polyedra concentration are sig-
nificantly different from those at other G. polyedra
concentrations, Hyl can be rejected. The Analysis
of Variance (ANOVA, Zar, 1984) was used for the
statistical test.

H,2 can be rejected if there are values con-
sistently below or above the line of unity (means no
preference) in a plot of the ratios of ingestion rates
of Protoperidinium cf. divergens on each prey (G.
polyedra: Egg N) versus ratios of prey availability.

RESULTS

Test of H,1 (the predation rate of Protoperidinium
on copepod eggs is independent of the presence of
co-occurring algal prey)

With increasing mean G. polyedra concentration
by 115 (experiment 1) or 57 (experiment 2) times,
the ingestion rates of Egg N by Protoperidinium cf.
divergens decreased by only 1.7-2 times (Fig. 1A),
while ingestion of G. polyedra generally increased
(Fig. 1B). P. cf. divergens still prey on Egg N even
at 1.1 pgC ml” or 470 cells mI”, the highest mean
G. polyedra concentration tested in this study. Inges-
tion rate by P. cf. divergens on Egg N at G. po-
lyedra concentrations of 400-500 cells ml" and
mean Egg N concentration of 0.1-0.4 eggs ml™" was
0.03-0.04 eggs Protoperidinium™ d.

Ingestion rates of Egg N by Protoperidinium cf.
divergens at one Gonyaulax polyedra concentration
were significantly different from those at other G.
polyedra concentrations (ANOVA, p < 0.05 in both
experiments). Therefore, Hy1 can be rejected. These
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Fig. 1. Ingestion rates of Protoperidinium cf. divergens
on mixed diets of Gonyaulax polyedra and Egg N
(unidentified round copepod eggs with smooth sur-
face), the latter at 0.38 and 0.75 eggsml’, as a
function of mean G. polyedra concentration. Sym-
bols represent treatment means+1 S.E. (A) Inges-
tion of Egg N. Open circles: Experiment 1 (refer
to Table 1). Solid circles: Experiment 2. (B) Inges-
tion of G. polyedra prey. Symbols as in (A).

results show that the presence of G. polyedra sig-
nificantly affects, but did not reduce to zero (p <0.
01, 1-tailed t-test; Zar, 1984), the ingestion rates of
P. cf. divergens on Egg N.

Test of Hy2 (Protoperidinium do not distinguish
between copepod eggs and co-occurring algal prey)

The ratio of ingestion rates of Protoperidinium cf.
divergens on each prey as a function of ratios of
prey availability indicated a strong preference for
Egg N over Gonyaulax polyedra (Fig. 2). The ratio
of prey availability is the mean G. polyedra con-
centration divided by the mean Egg N concentration.
The line of unity means no preference (Murdoch,
1969). Hy2 can be rejected because there were
values consistently below the line of unity at all ra-
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Fig. 2. Prey selection of Protoperidinium cf. divergens on
mixed diets of Gonyaulax polyedra and Egg N.
Ingestion rate on G. polyedra, relative to ingestion
rate on Egg N, compared to relative availability of
G. polyedra. The ratio of prey availability is the
mean G. polyedra concentration divided by the
mean Egg N concentration. Symbols represent
treatment means+1 S.E. Solid and open circles as
in Fig. 1.

tios of prey availability in experiment 2 and all but
one (at the lowest mean G. polyedra concentration)
in experiment 1.

DISCUSSION

The results of these experiments reject Hy1 (the
predation rate of Protoperidinium on copepod eggs
is independent of the presence of co-occurring algal
prey) and H,2 (Protoperidinium do not distinguish
between copepod eggs and co-occurring algal prey).

The ingestion rates of P. cf. divergens on Egg N
decreased by only 1.7-2 times when mean G. po-
lyedra concentration increased by 57-115 times. A
strong preference of P. cf. divergens for Egg N over
G. polyedra, known as the optimal phytoplankton
prey for P. cf. divergens (Jeong and Latz, 1994),
can be responsible for this relatively small effect.

At a Protoperidinium cf. divergens density of 2
cells ml', at Egg N concentrations of 0.1-0.4 mI"
and at G. polyedra concentrations of 400-500 cells
ml”, 20-40% of the Egg N population could be con-
sumed in a day. This result suggests that predation
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by Protoperidinium on Egg N would significantly
affect the populations of copepod eggs even in phy-
toplankton blooms or red-tide periods. Because Pro-
toperidinium is itself prey for adult copepods, there
may be a severe battle between the populations of
Protoperidinium and copepods after a phytopl-
ankton bloom or red-tide period when both groups
are abundant.

Although Protoperidinium can ingest a very broad
range of prey species, my previous (Jeong and Latz,
1994) and present studics consistently show that Pro-
toperidinium has an ability to select among various
prey species. Chemosensory detection may be a ma-
jor mechanism of prey selection of Protoperidinium
rather than mechanosensory detection. Strom and Bus-
key (1993) found that the heterotrophic dinoflagellate
Oblea rotunda (Lebour) Balech, another pallium-fe-
eding dinoflagellate, responds to chemosensory stimu-
lation but not to mechanosensory. If a chemosensory
detection is a major mechanism for the pallium fe-
eding dinoflagellates, the smell of Egg N may be
more attractive to P. cf. divergens than that of
Gonyaulax polyedra. Otherwise, larger Egg N may
be more easily detected by P. cf. divergens than small-
er G. polyedra or the motionless egg caught and
handled than the swimming dinoflagellate. To und-
erstand more fully the prey selection of Protoper-
idinium, it is worthwhile to explore the prey detection
mechanisms of Protoperidinium in details.
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