Thermodynamics on the Mixed Micellization of Sodium Dodecylsulfate(SDS) with Sodium Dodecylbenzenesulfonate(DBS) in Pure Water

순수 물에서 Sodium Dodecylsulfate(SDS)와 Sodium Dodecylbenzenesulfonate(DBS)의 혼합미셀화에 대한 열역학적 고찰

  • Lee, Byung Hwan (Department of Liberal Arts, Korea Institute of Technology and Education)
  • 이병환 (한국기술교육대학교 교양학과)
  • Published : 19960600

Abstract

The critical micelle concentration(CMC) and the counterion binding $constant(\beta)$ at the CMC of the mixtures of Sodium dodecylsulfate(SDS) with Sodium dodecylbenzenesulfonate(DBS) in aqueous solutions have been determined from the concentration dependence of electrical conductance at several temperatures from $15^{\circ}C$ to $35^{\circ}C.$ Thermodynamic parameters(${\Delta}C_p,\;{\Delta}G_m^{\circ},\;{\Delta}H_m^{\circ}$${\Delta}S_m^{\circ}$ and ${\Delta}C_p$), associated with the micelle formation of SDS/DBS mixtures, have been estimated from the temperature dependence of CMC and $\beta$ values. The measured values of ${\Delta}G_m^{\circ}\;and\;{\Delta}C_p$ are negative but the values of ${\Delta}S_m/^{\circ}$ are positive in the whole measured temperature region. The significance of these thermodynamic parameters and their relation to the theory of the micelle formation of SDS/DBS mixtures have been also considered.

순수 물에서 Sodium dodecylsulfate(SDS)와 Sodium dodecylbenzenesulfonate(DBS)로 구성된 혼합계면활성제의 임계미셀농도(CMC) 및 반대이온의 결합상수(${\beta}$)값을 15$^{\circ}C$에서 35$^{\circ}C$까지의 온도범위에서 전도도법으로 측정하였으며, 측정된 CMC 및 ${\beta}$값의 온도에 따른 변화로부터 SDS/DBS 혼합계면활성제의 미셀화에 대한 여러가지 열역학 함수값(${\Delta}C_p,\;{\Delta}G_m^{\circ},\;{\Delta}H_m^{\circ}$${\Delta}S_m^{\circ}$)들을 계산하였다. 측정한 온도범위 내에서 SDS/DBS 혼합계면활성제의 미셀화로 인한 ${\Delta}G_m^{\circ}$${\Delta}C_p$의 값들은 모두 음의 값을 그리고 ${\Delta}S_m^{\circ}$값은 모두 양의 값을 나타내었다. 이러한 열역학 함수값들의 온도 및 몰분율조성(${\alpha}_{SDS}$)에 따른 변화를 이용하여 SDS/DBS 혼합계면활성제의 미셀화를 분석하였다.

Keywords

References

  1. J. Colloid. Sci. v.16 Flockhart, B. D.
  2. Langmuir v.10 Muller, N.
  3. J. Colloid Interdace Sci. v.129 Sharma, B.;Rakshit, A. K.
  4. Trans. Faraday Soc. v.60 Molyneux, P.;Rhodes, C. T.;Swarbric, J.
  5. J. Kor. Chem. Soc. v.38 Lee, B. H.
  6. Langmuir v.9 Muller, N.
  7. Langmuir v.9 Bertancini, C. R. A.;Neves, M. de F.;Nome, F.
  8. J. Chem. Soc. Faraday Trans. I v.71 Clint, J. H.;Walker, T.
  9. J. Phys. Chem. v.94 Mesa, C. La
  10. J. Kor. Chem. Soc. v.39 Lee, B. H.
  11. Mixed Surfactant Systems Graciaa, A. P.;Lachaise, J.;Schechter, R. S.;Ogino, K.;Abe, M.(ed.)
  12. ACS Symposium Series Mixed Surfactant Systems Hall, D. G.;Mearses, P.;Davidson, C.;Jones, E. W.;Taylor, J.;Holland, P. M.;Rubingh,m D. N.(ed.)
  13. Langmuir v.11 Furuya, H.;Moroi, Y.;Sugihara, G.
  14. J. Colloid Interface Sci. v.93 Zana, R.;Picot, C.;Duplessix, R.
  15. J. Phys. Chem. v.96 Shanks, P. C.;Franses, E. I.
  16. Langmuir v.11 Zana, R.;Levy, H.;Papoutsi, D.
  17. J. Phys. Chem. v.98 Kamenka, N.;Burgaud, I.;Zana, R.;Lindman, B.
  18. J. Phys. Chem. v.99 Paula, S;Sus, W.;Tuchtenhagen, J.;Blume, A.
  19. Langmuir v.11 Burrows, J. C.;Flynn, J.;Kutay, S. M.;Leriche, T. G.;Marangoni, D. G.
  20. J. Kor. Chem. Soc. v.37 Lee, B. H.
  21. Langmuir v.10 Gorski, N.;Gradzielski, M.;Hoffmann, H.
  22. J. Phys. Chem. v.95 Lee, B. H.;Christian, S. D.;Tucker, E. E.;Scamehorn, J. F.
  23. Langmuir v.10 Douglas, C. B.;Kaler, E. W.
  24. Langmuir v.11 Kamenka, N.;Chorro, M.;Chevalier, Y.;Levy, H.;Zana, R.
  25. Langmuir v.11 Lusvardi, K. M.;Full, A. P.;Kalen, E. W.