Ab Initio Studies of Hexahydroxybenzene Triscarbonate ($C_9O_9$) and Analogous Compounds ($C_9S_9,\;C_9O_6S_3,\;C_9O_3S_6$)

Hexahydroxybenzene Triscarbonate($C_9O_9$)와 유사화합물들의 ab initio 연구

  • 권영희 (한양대학교 자연과학대학 화학과) ;
  • 구민수 (한양대학교 자연과학대학 화학과)
  • Published : 19960400

Abstract

An ab initio molecular orbital method has been applied to investigation of molecular properties and equilibrium geometries for hexahydroxybenzene triscarbonate (C9O9) and its analogous cyclic compounds (C9S9, C9O6S3, C9O3S6). In these works, the optimized geometry of each compound has been obtained at HF and MP2 levels. These results have shown that the optimized geometries of these compounds prefer D3h planar structure to C3v bowl structure. Calculations of harmonic vibrational frequencies have been also carried out at HF/3-21G* level to analyze normal modes of these compounds. Bonding characters of these compounds are studied by Mulliken and natural populations obtained at HF/6-31G* level. We have also studied the structures and the populations of C6O6 and C6S6 at HF and MP2 levels which are obtained by pyrolyses of C9O9 and analogous compounds. In addition, the single point calculations have been performed to predict the approximate energy barrier for pyrolysis of each compound.

ab initio 방법을 이용하여 hexahydroxbenzene triscarbonate($C_9O_9$)와 이와 유사한 화합물($C_9O_9,C_9O_6S_3,C_9O_3S_9$)들의 평형구조(equilibrium geometry)와 에너지를 HF와 MP2 level에서 구하였다. 계산결과 이들 화합물은 모드 $C_{3v}$ bowl형 구조보다는 $D_{3h}$ 평면형구조가 더 안정함을 알 수 있었다. $HF/3-21G^*$ level에서 조화진동수(harmonic vibrational frequency)를 계산하였고 각각의 진동방식(vibrational mode)을 비교, 분석하였으며, $HF/63G^*$ level에서 구한 Mulliken population과 natural population을 이용하여 화합물들의 결합특성에 대하여 연구하였다. 또한 이들 화합물들의 열분해 의해서 생성되는 $C_6O_6$$C_6S_6$의 전자구조와 결합특성에 대한 연구를 HF와 MP2 level에서 하였다. 그리고 화합물들이 열분해하여 $C_6O_6,\;C_6S_6$, CO, 그리고 CS로 분리될 때의 필요한 에너지를 $HF/3-21G^*$ level에서 계산하여 열분해에 필요한 대략적인 에너지 장벽을 예상하여 보았다.

Keywords

References

  1. Tetrahedron v.40 Nallaiah, C
  2. Synthesis Richter, A. M;Beye, N;Fanghanel, E
  3. Chem. Ber v.123 Sulzle, D;Beye, N;Fanghnel, E;Schwarz, H
  4. Chem. Ber v.122 Slzle, D;Beye, N;Fanghnel, E;Schwarz, H
  5. Chem. Ber v.125 Maier, G;Schrot, J;Reisenauer, H. P;Frenking, G;Jonas, V
  6. Angew. Chem. Int. Ed. Engl v.29 Dimroth, K
  7. Gaussian-92 Frisch, M. J;Trucks, G. W;Head-Gordon, M;Gill, M. W;Wong, M. W;Foresman, J. B;Johnson, B. G;Schlegel, H. B;Robb, M. A;Replogle, E. S;Gomperts, R;Andres, J. L;Raghavachari, K;Binkley, J. S;Gonzalez, C;Martin, R. L;Fox, D. J;Defrees, D. J;Baker, J;Stewart, J. J. P;Pople, J. A
  8. Int. J. Quantum Chem. Symp. v.15 Pople, J. A;Schegel, H. B;Krishnan, R;Defrees, D. J;Binkley, J. B;Frisch, M. J;Whiteside, R. A;Hout, R. F;Hehre, W. J