Kinetic Studies on the Mechanism of Hydrolysis of 4'-[N-(9-Acridinyl)]-1'-(N-methanesulfonyl)-3'-methoxyquinonediimide

4'-[N-(9-Acridinyl)]-1'-(N-methanesulfonyl)-3'-methoxyquinonediimide의 가수분해 반응메카니즘에 관한 반응속도론적 연구

  • Kim, Tae Rin (Department of Chemistry Korea University) ;
  • Chung, Dong In (Industrial Health Resrarch Institute Korea Industrial Safety Corporation) ;
  • Pyun, Sang Yong (Department of Chemistry Pukyong National University)
  • 김태린 (고려대학교 화학과) ;
  • 정동인 (한국산업안전공단 산업보건연구원) ;
  • 변상용 (부경대학교 화학과)
  • Published : 19961200

Abstract

The rate constants for the hydrolysis of 4'-[N-(9-acridinyl)]-1'-(N-methanesulfonyl)-3'-methoxyquinonediimide(AMQD) were determined by ultraviolet visible spectrophotometer in water at $25^{\circ}C.$ The rate equation which could be applied over wide pH ranges were obtained. On the basis of pH-rate profile, Bronsted plot, hydrolysis product analysis, general base catalysis and substituent effect, the plausible hydrolysis mechanism was proposed: Below pH 3.00, the hydrolysis reaction was proceeded by the attack of water to 4'-position of quinonoid after protonation at nitrogen of acridinyl and between pH 3.00 and 9.00, the addition of water and hydroxide occurred competitively. However, above pH 9.00, the rate constants were dependent upon only the concentration of hydroxide ion.

4'-[N-(9-Acridinyl)]-1'-(N-methanesulfonyl)-3'-methoxyquinonediimide(AMQD) 의 가수분해속도상수를 25.deg.C의 수용액속에서 자외선 분광법으로 측정하여 넓은 pH에서 잘 맞는 반응속도식을 구하였다. pH에 따르는 속도상수의 변화, Bronsted plot, 가수분해 생성물을 확인, 일반염기 및 치환기 효과 등으로부터 실험 사실에 잘 맞는 반응메카니즘을 제안하였다. 즉 pH 3.00 이하에서는 acridinyl기의 질소에 양성자가 첨가된 다음 quinonoid의 4'-위치에 물의 첨가가 일어나 가수분해가 진행되며, pH 3.00-9.00 사이에서는 물분자와 수산화 음이온의 첨가가 경쟁적으로 일어나 반응이 진행되었고, pH 9.00이상에서는 수산화 음이온의 농도에만 비례함을 알았다.

Keywords

References

  1. The Chemistry of the Carbon-Nitrogen Double bond Patai, S.
  2. Ber. v.43 Busch, M.;Ruppenthal, R.
  3. J. Chem. Ber. v.95 Behringer, H.;Fischer, H.
  4. Chem. Ber. v.96 Eilingsfeld, H.;Seefelder, M.;Weidinger, H.
  5. J. Am. Chem. Soc. v.73 Adams, R.;Wankel, R. A.
  6. Ber. v.37 Willstatter, R.;Pfannenstiehl, A.
  7. Cancer Treat. Rep. v.66 Fergason, L. r.;Denney, W. A.
  8. Chem. Rev. v.16 Michael, L.
  9. Photo Sci. Eng. v.8 Tong, L. K. J.;Glesman, M. C.
  10. Progress in Physical Organic Chemistry Jencks, W. P.
  11. J. Korean Chem. Soc. v.35 Kim, T. R.;Kwon, K. S.;Kim, Y. J.;Sung, N. D.
  12. J. Korean Chem. Soc. v.28 Kim, T. R.;Kwon, K. S.;Han, S. H.;Sung, N. D.
  13. J. Korean Chem. Soc. v.35 Kwon, K. S.;Park, C. K.;Sung, N. D.
  14. J. Phys. Chem. v.58 Tong, L. K. J.
  15. J. Am. Chem. Soc. v.82 Tong, L. K. J.;Glesmann, M. C.;Bent, R. L.
  16. Photophysik. Photo. Chem. v.45 Mayer, K.;Ulbricht, H.
  17. J. Med. Chem. v.11 Cain, B. F.;Atwell, G. J.
  18. J. Med. Chem. v.18 Cain, B. F.;Atwell, G. J.;Danney, W. A.
  19. Rec. Trav. v.80 Koopman, H.
  20. J. Am. Chem. Soc. v.73 Moloche, I.;Laidler, K. J.
  21. J. Med. Chem. v.15 Atwell, G. J.;Cain, B. F.;Seelye, R. N.
  22. J. Org. Chem. v.35 Crossland, R. K.;Servis, R. L.
  23. Org. Syn. v.Ⅲ Albert, A.
  24. J. Chem. Soc. Bacon, N.;Baulton, A. J.
  25. J. Chem. Soc. Albert, A.