DOI QR코드

DOI QR Code

Ab initio Studies on the Hetero Diels-Alder Cycloaddition

  • Published : 1996.09.20

Abstract

Hetero Dieis-Alder reactions containing phosphorus atom at various positions of diene and dienophile as well as standard Dieis-Alder reaction between ethylene and cis-l,3-butadiene have been studied using ab initio method. Activation energy showed a good linear relationship with the FMO energy gap between diene and dienophile, which can be normally used to explain Dieis-Alder reactivity. Since π-bond cleavage and σ-bonds formation occur concertedly at the TS, geometrical distortion of diene and dienophile from the reactant to the transition state is the source of barrier. Based on the linear correlations between activation barrier and deformation energy, and between deformation energy and π-bond order change, it was concluded that the activation barrier arises mainly from the breakage of π-bonds in diene and dienophile. Stabilization due to favorable orbital interaction is relatively small. The geometrical distortions raise MO levels of the TS, which is the origin of the activation energy. The lower barrier for the reactions of phosphorus containing dienophile (reactions C, D, and E) can be explained by the electronegativity effect of the phosphorus atom.

Keywords

References

  1. Angew. Chem., Int. Ed. Eng. v.8 Woodward, R. B.;Hoffmann, R.
  2. Frontier Orbitals and Organic Chemical Reactions Fleming, I.
  3. J. Am. Chem. Soc. v.108 Dewar, M. J. S.;Olivella, S.;Rzepa, H. S.
  4. J. Am. Chem. Soc. v.108 Dewar, M. J. S.;Olivella, S.;Stewart, J. J. P.
  5. Acc. Chem. Res. v.28 Houk, K. N.;Gonzalez, J.;Li, Y.
  6. The Conservation of Orbital Symmetry Woodward, R. B.;Hoffmann, R.
  7. J. Org. Chem. v.58 McCarrick, M. A.;Wu, Y.-D.;Houk, K. N.
  8. Some Modern Methods of Organic Synthesis Carruthers, W.
  9. J. Am. Chem. Soc. v.110 Lacombe, S.;Gonbeau, D.;Cabioch, J.-L.;Pellerin, B.;Denis, J.-M.;Pfister-Guillouzo, G.
  10. Angew. Chem., Int. Ed. Engl. v.25 Bock, H.;Bankmann, M.
  11. J. Chem. Soc., Chem. Commun. Schoeller, W.;Niecke, E.
  12. Acc. Chem. Res. v.25 Mathey, F.
  13. J. Org. Chem. v.54 Goff, P. L.;Mathey, F.;Ricard, L.
  14. Tetrahedron v.47 Abbari, M.;Cosquer, P.;Tonnard, F.;Yeung Lam Lo, Y. Y. C.;Carrie, R.
  15. Gaussian 92, IBM-RS 6000-Revision, C. Frisch, M. J.;Trucks, G. W.;Head-Gordon, M.;Gill, P. M. W.;Wong, M. W.;Foresman, J. B.;Johnson, B. G.;Schlegel, H. B.;Robb, M. A.;Replogle, E. S.;Gomperts, S.;Andres, J. L.;Raghavachari, K.;Binkley, J. S.;Gonzalez, C.;Martin, R. L.;Fox, D. J.;DeFrees, D. J.;Baker, J.;Stewart, J. J. P.;Pople, J. A.
  16. J. Am. Chem. Soc. v.104 Pietro, W. J.;Francl, M. M.;Hehre, W. J.;DeFrees, D. J.;Pople, J. A.;Binkley, J. S.
  17. J. Am. Chem. Soc. v.102 Binkley, J. S.;Pople, J. A.;Hehre, W. J.
  18. J. Am. Chem. Soc. v.104 Gordon, M. S.;Binkley, J. S.;Pople, J. A.;Pietro, W. J.;Hehre, W. J.
  19. Angew. Chem., Int. Ed. Engl. v.19 Muller, K.
  20. J. Chem. Phys. v.80 Bell, S.;Crighton, J. S.
  21. Phys. Rev. v.46 Muller, C.;Plesset, M. S.
  22. J. Chem. Phys. v.56 Hehre, W. J.;Ditchfield, R.;Pople, J. A.
  23. J. Chem. Phys. v.77 Francl, M. M.;Pietro, W. J.;Hehre, W. J.;Binkley, J. S.;Gordon, M. S.;DeFrees, D. J.;Pople, J. A.
  24. J. Am. Chem. Soc. v.114 MaCarrick, M. A.;Wu, Y.-D.;Houk, K. N.
  25. J. Comput. Chem. v.17 Jursic, B. S.;Zdravkovski, Z.
  26. J. Chem. Soc. Chem. Commun. Schoeller, W.
  27. Can. J. Chem. v.63 Mitchell, D. J.;Schlegel, H. B.;Shaik, S. S.;Wolfe, S.
  28. Theoretical Aspects of Physical Organic Chemistry Shaik, S. S.;Schlegel, H. B.;Wolfe, S.
  29. Bull. Korean Chem. Soc. v.7 Lee, I.;Kim, C. K.;Song, C. H.
  30. J. Am. Chem. Soc. v.69 Pauling, L.
  31. J. Mol. Struct.(Theochem) v.167 Lendvay, G.
  32. J. Phys. Chem. v.93 Lendvay, G.
  33. J. Am. Chem. Soc. v.103 Wolfe, S.;Mitchell, D. J.;Schlegel, H. B.
  34. J. Org. Chem. v.54 Bach, R. D.;McDouall, J. J. W.;Schlegel, H. B.;Wolber, G.