Synthesis and Reaction of Novel Tricyclic Dynemicin A Models with Methyl Group

Hoon Han Ryu and Yong Pyo Hong*
Department of Chemistry, Andong National University, Andong 760-749, Korea

Received May 16, 1996

Abstract

New dynemicin A mimics with methyl group $\mathbf{2 a}$ and $\mathbf{2 b}$ were synthesized, and acid-induced hydrolyzed to see an electronic effect of substituent for epoxide opening. The model $\mathbf{2 a}$ with methyl group at C 3 position was more rapidly transformed to diof 16a than 2b with methyl group at C 2 . This result suggests that any substituent at C 3 position plays more important role than any substituent at C 2 position in the dynemicin A mimic activation.

Introduction

A new type of antibiotics, esperamicin and calicheamicin, was reported by Lederle laboratories ${ }^{1}$ and Bristol-Meyers' researchers, ${ }^{2}$ respectively in 1987. These drugs have been received increasing attention because of their extremely potent antitumor activity and unusual structure containing enediyne system. ${ }^{3}$ The dynemicin A (1) ${ }^{4}$ isolated from micromonospora chersina also showed a potent antitumor activity in vitro and in vivo. Structurally, this drug was characterized as a hybrid molecule of two typical chemotypes of antineoplastic agents, enediyne and anthraquinone. The pronounced cytotoxic activity of these compounds has been attributed to their ability to undergo Bergman cyclization to give a phenylene diradical which initiates DNA cleavage. ${ }^{5}$ Cycloaromatization for 1 is triggered by epoxide opening induced by developing electron density at $\mathrm{C}-9$. This suggestion that epoxide opening is a critical step of the drug activation has been supported by the results of molecular modeling and mechanistic studies. ${ }^{67}$ Accordingly, for the model compound (i.e., 2a) the use of proper substituent on benzene ring will give an effect on electron density of $\mathrm{C10a}$ and then, epoxide opening and cycloaromatization will be able to be controlled. In this paper, we describe the syntheses and acid-induced Bergman cyclization of tricyclic dynemicin A models $2 a$ and 2b.

Dynemicin A (1)

2a $\mathrm{X}=3-\mathrm{CH}_{3}$
2b $\mathrm{X}=2-\mathrm{CH}_{3}$

Results and Discussion

Synthesis of Dynemicin A Models. Scheme 1 and 2 summarize the construction of new dynemicin A model 2a starting 3 -methyl-7,8,9,10-tetrahydrophenanthridine (3) ${ }^{8}$ using a typical preparation method ${ }^{9,10}$ for the dynemicin A
model compounds.
The first strategy to make $\mathbf{2 a}$ is the $\mathbf{C} 6$ and C 10 functionalization of compound 3 . The treatment of $\mathbf{3}$ with m-chloroperoxybenzoic acid ($m \mathrm{CPBA}$) in dichloromethane gave the N. oxide, which was vigorously stirred to give the acetate 4. This acetate was converted to the silyl ether 6 in overall high yield by conventional method via base hydrolysis of product 5. Introduction of acetylene at C6 with ethynylmagnesium bromide and protection of N5 with phenyl chloroformate transformed compound 6 to diastereomeric mixture 7. Continuously, treatment of 7 with mCPBA yielded the epoxide 8, which was converted to the ketone 10 via alcohol 9 by desilylation, followed by oxidation with pyridinium dichlorochromate (PCC) (Scheme 2). Coupling of compound 10 and vinyl chloride 11 using $\mathrm{Pd}(0)-\mathrm{Cu}(\mathrm{I})$ catalysis afforded an enediyne product 12. On the other hand, even though direct cyclization of 12 with CsF to give alcohol 14 via 13 was tried, only desilylated product $\mathbf{1 3}$ was isolated in relatively good yield. ${ }^{11}$ Treatment of 13 with lithium diisopropylamide (LDA) resulted in the formation of 10 -membered enediyne cyclic adduct 14. Finally, the tertiary hydroxy group in 14 was removed to obtain a closer model of dynemicin A. The treatment of alcohol 14 with thiocarbonyldiimidazole

Scheme 1. C 6 and C 10 functionalization of tricyclic compound. Reagents and conditions: (a) 1.2 equiv of $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25$ ${ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 95 \%$; (b) $\mathrm{Ac}_{2} \mathrm{O}, 25{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 74 \%$; (c) $\mathrm{K}_{2} \mathrm{CO}_{3}$ (catalytic), $\mathrm{MeOH}, 25{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 92 \%$; (d) 1.1 equiv of ' $\mathrm{BuMe}_{2} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}, 1.5$ equiv of 2,6 -lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 94 \%$; (e) 1.1 equiv of ethynylmagnesium bromide, 1.1 equiv of $\mathrm{PhOCOCl}, \mathrm{THF},-78$ ${ }^{\circ} \mathrm{C}$ to $25{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 88 \%$.

Scheme 2. Synthesis of a Dynemicin A Model.
Reagents and conditions: (a) 1.5 equiv of $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25$ ${ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 91 \%$; (b) 1.2 equiv of ${ }^{" B u} \mathrm{NF}^{2}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 99 \%$; (c) 1.8 equiv of PCC, $4-\AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, 78%; (d) 1.6 equiv of $11,0.06$ equiv of $\mathrm{Pd}_{\left(\mathrm{PPh}_{3}\right)_{4}, 0.24 \text { equiv }}$ of CuI, 2.0 equiv of ${ }^{n} \mathrm{BuNH}_{2}$, benzene, $25{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 54 \%$; (e) 3.5 equiv of $\mathrm{CsF}, 2.0$ equiv of $\mathrm{Ac}_{2} \mathrm{O}, 1.0$ equiv of $\mathrm{NaHCO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, $60^{\circ} \mathrm{C}$, $10 \mathrm{~min}, 79 \%$; (f) 1.0 equiv of LDA, toluene, $-78^{\circ} \mathrm{C}, 30$ $\min , 88 \%$ based on 22% recover of 13 ; (g) 3.0 equiv of thiocarbonyldiimidazole, 0.5 equiv of DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}, 92 \%$ based on 28% recover of 14 ; (h) 2.0 equiv of $n-\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$ (cat.), toluene, $80{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 54 \%$.
in the presence of 4 -(dimethylamino)pyridine (DMAP) gave the compound 15, which was reduced to the desired compound 2 a by $n-\mathrm{Bu}_{3} \mathrm{SnH}$ and $2,2^{\prime}$-azobis(isobutyronitrile) (AIBN).

Activation of Dynemicin \mathbf{A} models. The tandem acid-induced epoxide opening and Bergman cyclization of new models was performed to examine an electronic effect by methyl group (Scheme 3). Compounds 2a and $\mathbf{2 b}$ with methyl group at C 3 and C 2 positions were treated with p toluenesulfonic acid in benzene/1,4-cyclohexadiene (3/1) at 40° C. Expectedly, 2 a and $\mathbf{2 b}$ gave the aromatized products $16 a$ and 16b, respectively via tandem epoxide opening and Bergman cyclization. Table 1 shows the reaction time and yields for the enediyne models. The unsubstituted compound 2c was also activated to compare the reaction profile with two methyl substituted models under the same condition. ${ }^{10}$ Interestingly, epoxide opening for the three compounds showed a significant rate difference. The order of reactivity was $\mathbf{2 a}, \mathbf{2 b}$ and 2c. Moreover, compound 2a with methyl group at para position to the internal epoxide underwent epoxide opening more rapidly than $\mathbf{2 b}$ with methyl group at meta position. These results suggest that the methyl group partici-

Scheme 3.

Table 1. *

Substrate	Reaction time (min)	Product	Yield (\%)
$\mathbf{2 a}$	10	$\mathbf{1 6 a}$	52
$\mathbf{2 b}$	40	$\mathbf{1 6 b}$	51
$\mathbf{2 c}$	80	$\mathbf{1 6 c}$	$\mathbf{4 6}$

*All reactions were run in duplicate and averaged. Reaction progress was checked every five minute by TLC.
pates in the epoxide opening as an activator, and confirm a known mechanism that epoxide opening triggers Bergman cyclization in dynemicin A chemistry.
In summary, two tricyclic dynemicin A model compounds were easily synthesized from methyl substituted $7,8,9,10$-tetrahydrophenanthridine. In acidic condition, the epoxide of these methyl derivatives was opened with different rate and then, Bergman cyclized to give the aromatized compounds. The fact that 2a is more rapidly hydrolyzed to diol than 2b suggests that C 3 position could have priority to C 2 in the choice of any substituent for new dynemicin mimic development.

Experimental Section

Genenral Techiques. Melting points were recorded on a Büchi 512 capillary melting point appratus and were not corrected. NMR spectra were recorded on a Varian Unity Plus FT-300 instrument. IR spectra were recorded on a Perkin Elmer 1430 IR spectrophotometer.

All reactions were monitored by thin-layer chromatography carried out on 0.25 mm E. Merck silica gel plates ($60 \mathrm{~F}-254$) under UV light. Preparative thin layer chromatography was performed on $0.5 \mathrm{~mm} \times 20 \mathrm{~cm} \times 20 \mathrm{~cm}$ E. Merck silica gel plates ($60 \mathrm{~F}-254$). E. Merck silica gel (60, particle size $0.040-$ 0.063 mm) was used for flash chromatography.

3-Methyl-7,8,9,10-tetrahydrophenanthridine \mathbf{N} Oxide (3a). A solution of ($6.87 \mathrm{~g}, 34.8 \mathrm{mmol}$) in dichloromethane (140 mL) was treated at $25{ }^{\circ} \mathrm{C}$ with $\mathrm{mCPBA}(12.19$ g of a 55% sample, 38.9 mmol) and stirred for 2 h . The solution was poured into saturated sodium bicarbonate solution (250 mL) and extracted. The aqueous layer was extracted with further dichloromethane ($2 \times 250 \mathrm{~mL}$), and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The residue was purified by flash chromatography (silica, 10% methanol in ethyl acetate) to give the N-Oxide $3 \mathrm{a}(7.05 \mathrm{~g}, 95 \%)$ as a white cryatalline solid: $\mathrm{mp} 73-74{ }^{\circ} \mathrm{C}$; $R_{f}=0.38$ (silica, 10% methanol in ethyl acetate); IR (KBr) $\boldsymbol{v}_{\text {max }} 2870,1580,1420,1200 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta=8.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4), 8.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 6), 7.74(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, H1), $7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2), 2.95(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 10)$, $2.71(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 7), 2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.92-1.85$ and $1.84-1.79$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H} 8$ and H 9); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=139.6,139.2,136.3,132.6,130.3,129.2,127.5,122.9,119.0$, 26.9, 24.5, 22.1, 21.9, 21.6.

10-Acetoxy-3-methyl-7,8,9,10-tetrahydrophenanthridine (4). A solution of the N-Oxide $3 \mathrm{a}(7.05 \mathrm{~g}, 33.1$ mmol) in acetic anhydride (62.3 mL) was treated at $25{ }^{\circ} \mathrm{C}$ for 3 h , evaporated to dryness, dissolved in dichloromethane (250 mL), and washed with saturated sodium bicarbonate solution (200 mL). The aqueous layer was extracted with dichloromethane ($2 \times 100 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, evaporated in vacuo, and the residue was purified by flash chromatography (silica, 20% ethyl acetate in hexane) to give the acetate $4(6.22 \mathrm{~g}, 74 \%)$ as a white cryatalline solid: mp $130-131{ }^{\circ} \mathrm{C} ; R_{f}=0.31$ (silica, 20% ethyl acetate in hexane); $\mathrm{IR}(\mathrm{KBr}) v_{\text {max }} 2950,2880,1720,1460 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.67$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 6$), 7.86 (s , $1 \mathrm{H}, \mathrm{H} 4), 7.66$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1$), 7.37 (dd, $J=6.6,1.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 2$), 6.55 (br s, $1 \mathrm{H}, \mathrm{H} 10$), 3.01 (br $\mathrm{d}, J=14.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H} 7$), $2.89-2.83$ (m, 1H, H7), $2.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.27$ (br $\mathrm{d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 9), 2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.05-1.95(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{H} 8$ and H 9); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.2,152.3$, $147.2,138.4,136.5,130.2,129.3,129.1,124.5,122.1,64.5,28.7$, 26.6, 21.5, 21.1, 17.3.

10-Hydroxy-3-methyl-7,8,9,10-tetrahydrophenanthridine (5). A solution of $4(1.52 \mathrm{~g}, 5.95 \mathrm{mmol})$ in methanol $(25 \mathrm{~mL})$ was treated with potassium carbonate (120 mg , catalytic) and stirred at $25^{\circ} \mathrm{C}$ for 30 min . The solution was concentrated to $c a .7 \mathrm{~mL}$, poured into water (200 mL), and extrated with dichloromethane ($2 \times 200 \mathrm{~mL}$). The combined organic layer were evaporated in vacuo, and residue was filtered with glass filter, and washed with ether to give alcohol $5(1.17 \mathrm{~g}, 92 \%)$ as a white cryatalline solid: mp $164-165{ }^{\circ} \mathrm{C}$; $R_{f}=0.34$ (silica, 50% ethyl acetate in hexane); IR (KBr) $\nu_{\text {max }}$ $3570,2880,1640,1470,1320,1170 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta=8.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 6), 8.19(\mathrm{~d}, J=8.4 \mathrm{H} z, 1 \mathrm{H}, \mathrm{H})$), 7.78 (s, 1H, H4), 7.46 (dd, $J=6.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6$), 5.41 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 10$), 3.40 (br s, $1 \mathrm{H}, \mathrm{OH}$), 2.97-2.55 (m, $2 \mathrm{H}, \mathrm{H} 7$), 2.53 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.12-1.78 (m, $4 \mathrm{H}, \mathrm{H} 8$ and H 9); ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=147.4142 .0,136.4,132.5,123.8,123.4$, $123.3,120.1,119.4,56.2,26.9,21.7,16.3,11.9$.

10-[(tert-Butyldimethylsilyl)oxy]-3-methyl-7,8,9,10tetrahydrophenanthridine (6). A stirred solution of 5 ($3.62 \mathrm{~g}, 17.0 \mathrm{mmol}$) in dry dichloromethane (50 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ and treated with 2,6 -lutidine ($1.82 \mathrm{~mL}, 25.5$ mmol) and tert-butyldimethylsilyl triflate ($4.29 \mathrm{~mL}, 18.7$ mmol). After 30 min at $0^{\circ} \mathrm{C}$, methanol (3.1 mL) was added and continued to stir for 5 min . The reaction mixture was poured into saturated sodium bicarbonate solution (100 mL) and extracted. The aqueous layer was extracted with further dichloromethane ($2 \times 100 \mathrm{~mL}$), the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo, and the residue was purified by flash chromatography (silica, 25% ethyl acetate in hexane) to generate silyl ether $6(5.23 \mathrm{~g}, 94 \%)$ as a white semi-solid: $R_{f}=0.65$ (silica, 25% ethyl acetate in hexane); IR (KBr) $v_{\text {max }} 2960,2880,1490,1350,1230 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.63$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 6$), 7.96 (d , $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1$), $7.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4), 7.37$ (dd, $J=6.9,1.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 2$), $5.43(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 10), 3.02-2.94(\mathrm{~m}, 1 \mathrm{H}$,

H7), 2.85-2.74 (m, 1H, H7), 2.55 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.23-2.08 (m, $2 \mathrm{H}, \mathrm{H} 8$ or H 9), $1.90-1.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 8$ or H 9$), 0.85(\mathrm{~s}, 9 \mathrm{H}$, t-Bu), $0.22\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
$\mathbf{N} \cdot[$ (Phenyloxy)carbonyl]-10-[(tert-butyldimethylsi-lyl)oxy]-6-ethynyl-3-methyl-5,6,7,8,9,10-hexahydrophenanthridine (7). A solution of quinoline $6(6.04 \mathrm{~g}, 19.0$ mmol) in THF (93 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and treated with ethynyl magnesiumbromide (41.7 mL of a 0.5 M solution in THF, 20.9 mmol), and then phenyl chloroformate (2.6 mL , 20.9 mmol) was added. The reaction mixture was allowed to slowly warm up to $25{ }^{\circ} \mathrm{C}$ over 30 min , quenched with saturated ammonium chloride solution (500 mL), and extracted. The aqueous layer was extracted with ethyl acetate ($2 \times$ $300 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}\right.$ 4) and evaporated in vacuo. The residue was purified by flash chromatography (silica, 14% ethyl acetate in hexane) to give the carbamate $7(7.73 \mathrm{~g}, 88 \%)$ as a white semi-solid: $R_{f}=0.41$ (silica, 14% ethyl acetate in hexane); IR (KBr) $\nu_{\text {max }}$ 3190, 2950, 2880, 2140, 1720, 1520, 1420, $1110 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.40 (td, $2 \mathrm{H}, J=8.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $7.30-7.19(\mathrm{~m}, 4 \mathrm{H}$, aromatic), 6.98 (br d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 5.65 (d, $J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 6$, major isomer), $5.61(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6$, minor isomer), 4.98 (t, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 10$, major isomer), 4.67 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 10$, minor isomer), 2.36 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.28-1.63 (m, $7 \mathrm{H}, \mathrm{H} 7, \mathrm{H} 8, \mathrm{H} 9$ and $\mathrm{C} \equiv \mathrm{CH}), 0.95$ and $0.83(2 \mathrm{~s}, 9 \mathrm{H}, t$-Bu), 0.27, $0.20,0.10$ and 0.08 (singlets, $6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}$); ${ }^{18} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=151.0,136.7,133.4,130.0,129.5,129.3$, $125.7,123.8,121.7,121.6,80.1,71.5,71.4,64.1,48.9,32.7,28.1$, $26.0,25.9,21.5,18.3,18.2,18.0,-3.1,-3.6,-4.2,-4.4$.
\mathbf{N}-[(Phenyloxy)carbonyi]-10-[(tert-butyldimethylsi-lyi)oxy]-6a,10a-epoxy-6-ethynyl-3-methyl-5,6,6a,7,8,9, 10,10a-octahydrophenanthridine (8). A solution of 7 $(500 \mathrm{mg}, 1.06 \mathrm{mmol})$ in dichloromethane $(3.19 \mathrm{~mL})$ was treated with m CPBA $(70 \%, 390 \mathrm{mg}, 1.58 \mathrm{mmol})$ and stirred at $25^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was poured into saturated aqueous sodium bicarbonate (100 mL) and extracted with dichloromethane $(2 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. The residue was purified by flash column chromatography (silica, 14% ethyl acetate in hexane) to produce 472 mg of $8(91 \%)$ as a white solid: $\mathrm{mp} 143-144{ }^{\circ} \mathrm{C}$; $R_{f}=0.33$ (silica, 14% ethyl acetate in hexane); IR (KBr) $v_{\text {max }}$ $3190,2950,2135,1720,1520,1420,1180 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.78$ and 7.55 (dd, $J=7.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.42-7.07(\mathrm{~m}, 7 \mathrm{H}$, aromatic), $5.60(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$, H 6 , major isomer), 5.67 (d, $J=1.5 \mathrm{~Hz}, \mathrm{H} 6$, minor isomer), 4.96 (br s, 1H, H10, minor isomer), 4.84 (dd, $J=9.9,4.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H} 10$, major isomer), $2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 2.35 (br d, $\mathrm{J}=6.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 1.99-1.61(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H} 7$, H 8 and H 9$), 0.94$ and $0.87(2 \mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 0.31,0.26,0.21$, 0.12 and 0.05 (singlets, $\left.6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
\mathbf{N}-[(Phenyloxy)carbonyl]-6a,10a-epoxy-6-ethynyl-10-hydroxy-3-methyl-5,6,6a,7,8,9,10,10a-octahydrophenanthridine (9). A solution of $8(7.47 \mathrm{~g}, 15.3 \mathrm{mmol})$ in THF (100 mL) was treated with tetra- n-butylammonium fluoride (TBAF) ($19.1 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 19.1 mmol) at 25 ${ }^{\circ} \mathrm{C}$ for 4 h and the solvent was evaporated to dryness in vacu. The residue was purified by flash column chromatography (silica, 25% ethyl acetate in hexane) to give 5.94 g of alcohol $9(99 \%)$ as a white semi-solid: $R_{f}=0.16$ (silica,
25% ethyl acetate in hexane); IR (KBr) $v_{\text {mar }} 3320,3180,2950$, $2880,2150,1720,1420,1360 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $7.26-7.08(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $5.62(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$, H6), $4.69(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 10), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.32-1.40$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{H} 7, \mathrm{H} 8$ and H9).
N-[(Phenyloxy)carbonyl]-6a,10a-epoxy-6-ethynyl-10-oxo-3-methyl-5,6,6a,7,8,9,10,10a-octahydrophenanthridine (10). The alcohol $9(6.59 \mathrm{~g}, 17.6 \mathrm{mmol})$ was dissolved in dichlomethane (140 mL) and treated with activated $4 \AA$ molecular sieves (powder, 6.25 g) and pyridinium chlorochromate ($6.43 \mathrm{~g}, 29.8 \mathrm{mmol}$). The suspension was stirred for 1 h at $25{ }^{\circ} \mathrm{C}$, diluted with ethyl ether $(100 \mathrm{~mL})$, filtered through celite, and concentrated in vacuo. The residue was purified by flash chromatography (silica, 67% dichloromethane in hexane) to give ketone $10(3.78 \mathrm{~g}, 78 \%)$ as a white crystalline solid: mp $170-171^{\circ} \mathrm{C}$; $R_{f}=0.61$ (silica, 67% dichloromathane in hexane); IR (KBr) $\nu_{\max } 3180,2950,2130$, $1720,1520,1410,1260 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, armatic), $7.38-7.06(\mathrm{~m}, 7 \mathrm{H}$, aromatic), 5.71 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6), 2.78-2.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 9), 2.63-$ $2.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 9), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.34-2.22(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}$ and H 7 or H 8), $2.06-1.98$ (m, $2 \mathrm{H}, \mathrm{H} 7$ or H 8); ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=201.1,151.0,139.1,135.6,130.0,129.3,127.0$, $125.7,121.5,120.0,106.4,106.3,77.7,74.7,74.3,57.6,47.5$, 38.7, 23.7, 21.3, 18.4.
$N \cdot[($ Phenyloxy)carbonyl $]$-6-[6-(trimethylsilyl)-3(Z)-hexene-1,5-diynyl]-6a,10a-epoxy-6-ethynyl-10-oxo-3-methyl-5,6,6a,7,8,9,10,10a-octahydrophenanthridine (12). To a solution of 11 ($500 \mathrm{mg}, 1.34 \mathrm{mmol}$) in dry degassed benzene (10 mL) was added copper(I) iodide (61 mg , 0.32 mmol). To the resulting mixture was added the (Z)-chloroenyne 11 ($340 \mathrm{mg}, 2.14 \mathrm{mmol}$), followed by n-butylamine (266 $\mu \mathrm{L}, 2.68 \mathrm{mmol}$) and tetrakis(triphenylphosphine)palladium(0) ($93 \mathrm{mg}, 0.08 \mathrm{mmol}$) in dry degassed benzene (5 mL). The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h , diluted with ethyl ether (50 mL), poured into saturated ammonium chloride solution (100 mL), and the organic layer was separated. The aqueous layer was extracted with ethyl ether ($2 \times$ $100 \mathrm{~mL})$, the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo, and the residue was purified by flash chromatography (silica, 33% ethyl acetate in hexane) to give 358 mg of $12(54 \%)$ as a white semi-solid: $R_{f}=0.40$ (silica, 33% ethyl acetate in hexane); IR (KBr) $\nu_{\text {max }} 3060$, 2960, 1720, 1465, 1350, 1200, 840, $770 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.23$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.36(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 3 \mathrm{H}$, aromatic), $7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.13 (br d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), 7.05 (dd, $J=8.1,1.2 \mathrm{~Hz}$, 1 H , aromatic), 5.97 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6$). 5.82 (d, 11.1 Hz , 1 H , olefinic), 5.67 (dd, $J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), $2.78-2.65$ (m, 2H, H9), $2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.33-2.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 7), 2.03-$ 1.88 (m, 2H, H8), 0.23 (s, $\left.9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
\mathbf{N}-[(Phenyloxy)carbonyl $]$-6-[3(Z)-hexene-1,5-diynyl]-6a,10a-epoxy-6-ethynyl-10-oxo-3-methyl-5,6,6a,7,8,9, 10,10a-octahydrophenanthridine (13). Compound 12 ($443 \mathrm{mg}, 0.89 \mathrm{mmol}$), CsF ($475 \mathrm{mg}, 3.13 \mathrm{mmol}$), and dry $\mathrm{Na}-$ HCO_{3} ($75 \mathrm{mg}, 0.89 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}(40$ mL) and treated with acetic anhydride ($168 \mu \mathrm{~L}, 1.79 \mathrm{mmol}$) at $60{ }^{\circ} \mathrm{C}$. After 10 min stirring, the suspension was filtered through celite, and concentrated in vacuo, and the residue was purified by flash chromatography (silica, 33% ethyl ace-
tate in hexane) to generate 300 mg of $\mathbf{1 3 (7 9 \%) \text { as a white }}$ semi-solid: $R_{f}=0.31$ (silica 33% ethyl acetate in hexane); IR (KBr) $v_{\text {max }} 3280,3020,2960,1715,1375,1200 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.23$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.35 ($\mathrm{t}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}$, aromatic), $7.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.13 (br d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $7.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 5.91 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6$), 5.77 ($\mathrm{s}, 2 \mathrm{H}$, olefinic), 3.15 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}$), 2.78-2.63 (m, $2 \mathrm{H}, \mathrm{H} 9$), 2.35 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.33-2.07 (m, 2H, H7), 2.05-1.89 (m, 2H, H8); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=201.4,151.0,138.9,135.7,129.7$, $129.3,126.8,125.7,121.5,120.4,120.0,111.0,90.7,85.1,82.7$, $80.3,75.0,57.6,48.4,38.8,29.7,23.9,21.3,18.5$.
Compound 14. A solution of 13 ($300 \mathrm{mg}, 0.708 \mathrm{mmol}$) in dry toluene (60 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and treated with LDA (1.5 M in cyclohexane, $472 \mu \mathrm{~L}, 0.708 \mathrm{mmol}$) and then, stirred for 20 min . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(24 \mathrm{~mL})$, extracted with ethyl ether ($2 \times 100 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, 50% ethyl ether in hexane) to give the recovered $13(65 \mathrm{mg}, 22 \%)$ and 209 mg of $14(69 \%$ based on 22% recovery of 13) as a white solid: mp 122-123 ${ }^{\circ} \mathrm{C}$; $R_{f}=0.32$ (silica, 50% ethyl ether in hexane); IR (KBr) $v_{\text {mat }} 3460,3020,2950,2180,1715,1490,1360,1200,750 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta=8.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.41 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), 7.25 ($\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}$, aromatic), $7.16(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), 7.03 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $6.07(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), 5.87 (dd, $J=10.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), 5.51 (br s, ${ }^{1} \mathrm{H}$, $\mathrm{NCHC} \equiv \mathrm{C}$), 2.28 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.24-1.65 (m, $7 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta=153.0,150.9,137.2,135.5$, $131.3,129.6,126.6,126.0,125.9,125.3,122.3,121.8,102.8,94.1$, $92.8,88.9,73.0,71.9,63.9,50.3,34.4,23.0,20.9,18.9$.

Compound 15. A mixture of 14 ($187 \mathrm{mg}, 0.440 \mathrm{mmol}$), thiocarbonyldiimidazole ($235 \mathrm{mg}, 1.319 \mathrm{mmol}$), and DMAP ($27 \mathrm{mg}, 0.220 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}$) was stirred at 25 ${ }^{\circ} \mathrm{C}$ for 48 h . The solvent was removed in vacuo and the residue was purified by flash column chromatography (silica gel, 67% ethyl ether in hexane) to afford 15 ($155 \mathrm{mg}, 66 \%$), together with recovery of 14 ($53 \mathrm{mg}, 28 \%$) as a white solid: $\mathrm{mp}{ }^{\circ} \mathrm{C} ; R_{f}=0.43$ (silica, 67% ethyl ether in hexane); IR (KBr) $\nu_{\text {max }} 3020,2950,1720,1380,1260 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, CDCl_{3}): $\delta=8.38$ (br s, 1 H , imidazole), 7.64 (br s, 1 H , aromatic), 7.53 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic or imidazole), $7.42-7.17$ ($\mathrm{m}, 6 \mathrm{H}$, aromatic and imidazole), 7.04 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, aromatic), $6.95(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $5.94(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), 5.75 (dd, $J=9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), 5.58 (d, $J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHN}$), 3.08 (br d, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.46-2.07 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$) 2.33 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.87-1.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$).

Compound 2a. A solution of thionoimidazolide 15 (140 mg. 0.261 mmol) in toluene (5 mL) was treated with $n-\mathrm{Bu}_{3}$ $\mathrm{SnH}(103 \mu \mathrm{~L}, 0.523 \mathrm{mmol})$ and AIBN ($10 \mathrm{mg}, 7.2 \mathrm{~mol} \%$) and stirred at $80{ }^{\circ} \mathrm{C}$ for 2 h . The solution was concentrated in vacuo and the residue was purified by flash column chromatography (silica gel, 50% ethyl ether in hexane) to give the deoxygenated compound 2 a ($57.9 \mathrm{mg}, 54 \%$) as a white solid: $R_{f}=0.58$ (silica, 50% ethyl ether in hexane); IR (KBr) $v_{\max }$ 3020, 2940, 2180, 1720, 1505, 1370, 1300, $1200 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.48(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 7.39 7.33 (m, 3H, aromatic), $7.25-7.13(\mathrm{~m}, 3 \mathrm{H}$, aromatic), 7.03 (br d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), 5.78 (dd, $J=10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}$,
olefinic), 5.66 (dd, $J=10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic), 5.51 (br d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$), 3.77 (br s, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}$), 2.44-2.37 (m, $1 \mathrm{H}, \mathrm{CH}_{2}$) 2.33 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.28-2.20 (m, $1 \mathrm{H}, \mathrm{CH}_{2}$), 2.05-1.77 (m, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.64-1.58\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$).

Compound 2b. Obtained in 71% yield in a similar manner as that described for 2a, 2b as a white solid: $R_{f}=0.79$ (silica, 50% ethyl ether in hexane); IR (KBr) $\mathrm{v}_{\text {max }} 3020,2940$, $2180,1720,1510,1360,1320,1200 \mathrm{~cm}^{-1}$; 'H NMR (300 MHz , CDCl_{3}): $\delta=7.40-7.32(\mathrm{~m}, 4 \mathrm{H}$, aromatic), $7.26-7.11(\mathrm{~m}, 5 \mathrm{H}$, aromatic), 5.73 (ddd, $J=36.6,9.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}$, olefinic), 5.50 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}$), 3.79 (br s, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}$), $2.45-2.40$ (m, $\left.1 \mathrm{H}, \mathrm{CH}_{2}\right) 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.31-2.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.09-1.89$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.85-1.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.64-1.55(\mathrm{~m}, 1 \mathrm{H}$, CH_{2}).
Diol 16a. A solution of enediyne 2a ($20.4 \mathrm{mg}, 0.05$ mmol) in 1.4 -cyclohexadiene (0.5 mL) and benzene (1.5 mL) was treated with p-toluenesulfonic acid ($11.4 \mathrm{mg}, 0.06 \mathrm{mmol}$) stirred at $40{ }^{\circ} \mathrm{C}$ for 10 min . The solvent was removed in vacuo and the residue was purified by preparative thin layer chromatography (silica gel, 33% ethyl acetate in hexane) to give 16 a ($11.2 \mathrm{mg}, 52 \%$) as a white semi-solid: $R_{f}=0.31$ (silica, 67% ethyl ether in hexane); IR (KBr) $v_{\text {max }} 3470,3030$, 2930, 2870, 1710, 1490, 1380, $1200 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta=7.55-7.34$ ($\mathrm{m}, 4 \mathrm{H}$, aromatic), $7.28-7.12(\mathrm{~m}, 6 \mathrm{H}$, aromatic), 6.89 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic), $5.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHN}$), 3.33 (s, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}$), 2.78 (br s. $1 \mathrm{H}, \mathrm{OH}$), 2.32-2.20 (m, 1H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.18 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.81 (br dd, $J=12.9,4.2 \mathrm{H} 2,1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.60 (br s, $1 \mathrm{H}, \mathrm{OH}$), 1.41 (br t, $J=15.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $0.92-0.86$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$).

Diol 16b. Prepared from 2 b in 51% yield in a similar manner as that described for 16a, 16b as a white semi-solid: $R_{f}=0.42$ (silica, 67% ethyl ether in hexane); IR (KBr) $v_{\text {mar }}$ $3470,3020,2920,2870,1710,1490,1380,1200 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.49-7.33(\mathrm{~m}, 4 \mathrm{H}$, aromatic), $7.28-7.12$ $(\mathrm{m}, 6 \mathrm{H}$, aromatic), $6.91-6.87(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $5.79(\mathrm{~s}, 1 \mathrm{H}$, $C H \mathrm{~N}$), 3.33 (s, 1H, CH2CH), 2.82 (br s, 1H, OH), 2.31 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.26 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.15 (td, $J=12.8,3.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$) 1.79 (br dd, $J=13.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.61 (br s, 1H, OH), 1.40 (br t, $J=13.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $0.94-$

Bull. Korean Chem. Soc. 1996, Vol. 17, No. 9835
0.83 (m, 1H, $\mathrm{CH}_{2} \mathrm{CH}_{2}$).

Acknowledgment. This paper was supported by the Basic Science Research Institute Program, Ministry of Education, Korea (BSRI-95-3402).

References

1. Lee, M. D.; Dunne, T. S.; Siegel, M. M.; Chang, C. C.; Morton, G. O.; Borders, D. B. J. Am. Chem. Soc. 1987, 109, 3464.
2. Golik, J.; Clardy, J.; Dubay, G.; Groenewold, G.; Kawaguchi, H.; Konishi, M.; Krishnan, B.; Ohkuma, H.; Saitoh. K.; Doyle, T. W. J. Am. Chem. Soc. 1987, 109, 3461.
3. Zein, N.; Sinha, A. M.; McGahren, W. J.; Ellestad, G. A. Sceince 1988, 240, 1198.
4. Konishi, M.; Ohkuma, H.; Matsumoto, K.; Tsuno, T.; Kamei, H.; Miyaki, T.; Oki, T.; Kawaguchi, H.; VanDuyne, G. D.; Clardy, J. J. Antibot. 1989, 42, 1449.
5. Jones, R. R.; Bergman, R. G. J. Am. Chem. Soc. 1973, $6,25$.
6. (a) Sugiura, Y.; Shiraki, T.; Konishi, M.; Oki, T. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 3831. (b) Snyder, J. P.; Tipsword, G. E. J. Am. Chem. Soc. 1990, 112, 4040.
7. (a) Langley, D. R.; Doyle, T. W.; Beveridge, D. L. J. Am. Chem. Soc. 1991, 113, 4395. (b) Wender, P. A.; Kelly, R. C.; Beckham, S.; Miller, B. L. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 8835.
8. Hong, Y. P.; Ryu, H. H.; Park, B. S. Bull. Korean Chem. Soc. $1995,16,1000$.
9. (a) Nicolaou, K. C.; Dai, W.-M.; Wendeborn, S. V. Angew. Chem. Int. Ed. Engl. 1991, 30, 1032. (b) Nicolaou, K. C.; Hong, Y. P.; Torisawa, Y.; Tsay, S.-C.; Dai, W.-M. J. Am. Chem. Soc. 1991, 113, 9878. (c) Nicolaou, K. C.; Dai, W.M.; Hong, Y. P.; Tsay, S.-C.; Baldrige, K. K.; Siegel, J. S. J. Am. Chem. Soc. 1993, 115, 7844.
10. Nicolaou, K. C.; Smith, A. L.; Wendeborn, S. V.; Hwang, C.-K. J. Am. Chem. Soc. 1991, 113, 3106.
11. Wender, P. A.; Beckman, S.; Mohler, D. L. Tetrahedron Lett. 1995, 36, 209.
