DOI QR코드

DOI QR Code

Physical Properties of the Nonstoichiometric Perovskite $Dy_{1-x}Sr_xCoO_{3-y}$ System

  • Published : 1996.09.20

Abstract

Solid solutions of the nonstoichiometric Dy1-xSrxCoO3-y system with the compositions of x=0.00, 0.25, 0.50, 0.75, and 1.00 have been synthesized by the solid state reaction at 1000 ℃ under atmospheric air pressure. The crystallographic structures of the solid solutions are analyzed by the powder X-ray diffraction patterns at room temperature. The analyses assign the compositions of x=0.00 and 0.25 to the orthorhombic system with space group of Pbnm/D2h16, the compositions of x=0.50 and 0.75 to the tetragonal system like a typical SrCoO2.86, and the composition of x=l.00 or SrCoO2.50 to the brownmillerite type system with space group of I**a. The reduced lattice volumes increase with x value due to the larger radius of Sr2+ ion than that of Dy3+ ion. The mole ratio of Co4+ ion to total Co ion with mixed valence state between Co3+ and Co4+ ions at B sites or τ value has been determined by an iodometric titration. All the samples except for the DyCoO3 compound show the mixed valnce state and thus the composition of x=0.50 has the maximum τ value in the system. The oxygen vacancies increasing with x value are randomly distributed over the crystal lattice except for the composition of x=l.00 which have the ordering of the oxygen vacancies. The nonstoichiometric chemical formulas of the Dy1-xSrxCo3+1-τCo4+τO3-(x-τ)/2 system are formulated from the x, τ, and y values. The electrical conductivity in the temperature range of 100 to 900 K increases with τ value linearly because of positive holes of the Co4+ ions in π* band as a conducting carrier. The activation energy of the x=0.50 as Ea=0.17 eV is minimum among other compouds. Broad and high order transition due to the overlap between σ* and π* bands broadened by the thermal activation is observed near 1000 K and shows a low temperature-semiconducting behavior. Magnetic properties following the Currie-Weiss law show the low to high spin transition in the cobaltate perovskite. Especially, the composition of x=0.75 presents weak ferromagnetic behavior due to the Co3+-O2--Co4+ indirect superexchange interaction.

Keywords

References

  1. J. Appl. Phys. v.36 Goodenough, J. B.;Raccha, P. M.
  2. Phys. Rev. v.B6 Bhide, V. G.;Rajoria, D. S.;Rama Rao, G.;Rao, C. N. R.
  3. Japan. J. Appl. Phys. v.13 Ohbayashi, H.;Kudo, T.;Gejo, T.
  4. J. Chem. Soc., Faraday Trans. v.Ⅱ71 Jadhao, V. G.;Singru, R. M.;Rama Rao, G.;Bahadur, D.;Rao, C. N. R.
  5. Solid. State. Comm. v.44 Thornton, G.;Tofield, B. C.;Williams, D. E.
  6. Solid State Phys. v.21 Thornton, G.;Morrison, F. C.;Partington, S.;Tofield, B. C.;Williams, D. E.
  7. J. Solid State. Chem. v.61 Thornton, G.;Tofield, B. C.;Hewat, A. W.
  8. J. Solid State Chem. v.86 Kemp, J. P.;Beal, D. J.;Cox, P. A.
  9. Phys. Rev. v.B46 Chainani, A.;Mathew, M.;Sarma, D. D.
  10. J. Solid State Chem. v.107 Arunarkavalli, T.;Kulkarni, G. U.;Rao, C. N. R.
  11. J. Solid State Chem. v.105 Ryu, K. H.;Roh, K. S.;Lee, S. J.;Yo, C. H.
  12. Bull. Kor. Chem. Soc. v.15 Roh, K. S.;Ryu, K. S.;Ryu, K. H.;Yo, C. H.
  13. Chem. Mater. v.6 Daniel, M.;Giaquinta;Hans-conrad Zur Loye
  14. J. Phy. Soc. v.33 Takeda, T.;Yamaguchih, Y.;Watanabe, H.
  15. Mater. Res. Bull. v.14 Grenier, J. C.;Ghodbane, S.;Demazeau, G.;Pouchard, M.;Hagemuller, P.
  16. Bull. Kor. Chem. Soc. v.16 Kang, J. W.;Ryu, K. H.;Yo, C. H.
  17. Mater. Res. Bull. v.13 Grenier, J. C.;Menil, F.;Pouchard, M.;Hagenmuller, P.
  18. J. Solid State. Chem. v.123 Kim, M. G.;Ru, K. H.;Yo, C. H.
  19. J. Solid State. Chem. v.50 Buffat, B.;Demazeau, G.;Pouchard, M.;Dance, J. M.
  20. J. Solid State. Chem. v.111 Sarma, D. D.;Chainani, A.
  21. J. Chem. Soc., Dalton Trans. v.83 Battle, P. D.;Gibb, T. C.