DOI QR코드

DOI QR Code

Study on the Development of CVD Precursors I-Synthesis and Properties of New Titanium β-Diketonates

  • 발행 : 1996.07.20

초록

Preparation and properties of potential CVD (Chemical Vapor Deposition) precursors for the TiO2, a major component of the perovskite materials such as PT, PLT, PZT, and PLZT were investigated. Reactions between β-diketones and TiMe3, formed in situ failed to produce stable Ti(β-diketonate)3 complexes but a stable purple solid, characterized as (OTi(BPP)2)2 (BPP=1,3-biphenyl-1,3-propanedione) was obtained when BPP was used. Several new Ti(Oi-Pr)2(β-diketonate)2 complexes with aromatic or ring substituents were synthesized by the substitution reaction of Ti(OiPr)4by β-diketones and characterized with 1H NMR, IR, ICP, and TGA. Solid complexes such as Ti(Oi-Pr)2(BAC)2 (BAC=1.-phenyl-2,4-pentanedione), Ti(Oi-Pr)2(BPP)2, Ti(Oi-Pr)2(1-HAN)2 (1-HAN=2-hydroxy-1-acetonaphthone), Ti(Oi-Pr)2(2-HAN)2 (2-HAN=1-hydroxy-2-acetonaphthone), Ti(Oi-Pr)2(ACCP)2 (ACCP=2-acetylcyclopentanone), and Ti(Oi-Pr)2(HBP)2 (HBP=2-hydroxybenzophenone) were found to be stable toward moisture and air. Ti(Oi-Pr)2(ACCP)2 and Ti(Oi-Pr)2(HBP)2 were proved to have lower melting points and higher decomposition temperatures. However, these complexes are thermally stable and pyrolysis under an inert atmosphere resulted in incomplete decomposition. Ti(Oi-Pr)2(DPM)2 (DPM=dipivaloylmethane) and Ti(Oi-Pr)2(HFAA)2 (HFAA=hexafluoroacetylacetone) were sublimed substantially during the thermal decomposition. Pyrolysis mechanism of these complexes are dependent on type of β-diketone but removal of Oi-Pr ligands occurs before the decomposition of β-diketonate ligands.

키워드

참고문헌

  1. Tech. Dig. IEDM Eimori, T.;Ohno, Y.;Kimura, H.;Matsufusa, J.;Kishimura, S.;Yoshida, A.;Sumitani, H.;Maruyama, T.;Hayashide, Y.;Moriizumi, K.;Katayama, T.;Asakura, M.;Horikawa, T.;Shibano, T.;Itoh, H.;Sato, K.;Namba, K.;Nishimura, T.;Sato, S.;Miyoshi, H.
  2. Jpn. J. Appl. Phys. v.33 no.9B Kawahara, T.;Yamamuka, M.;Makita, T.;Naka, J.;Yuuki, A.;Mikami, N.;Ono, K.
  3. Electroceramics : Materials, Properties and Applications Moulson, A. J.;Herbert, J. M.
  4. Chem. Mater. v.6 Hendricks, W. C.;Desu, S. B.;Peng, C. H.
  5. Chemical Vapor deposition for Microelectronics; Principles, Technology, and Applications Sherman, A.
  6. Microelectronics Processing, Chemical Engineering Aspects Hess, D. W.;Jensen, K. F.
  7. The Chemistry of Metal CVD Kodas, T. T.;Hampden-Smith, M. J.
  8. Mat. Res. Soc. Symp. Proc. v.310 Hendricks, W. C.;Desu, S. B.;Si, J.;Peng, C. H.
  9. Mat. Res. Soc. Symp. Proc. v.310 De Keijser, M.;Veldhoven, V.;Dormans, G. J. M.
  10. Mat. Res. Soc. Symp. Proc. v.310 Gao, Y.;Bai, G.;Merkle, K. L.;Chang, H. L. M.;Lam, D. J.
  11. Jpn. J. Appl. Phys. v.33 no.9B Kimura, T.;Yamauchi, H.;Machida, H.;Kokubun, H.;Yamada, M.
  12. Jpn. J. Appl. Phys. v.31 no.9B Yamazaki, H.;Tsuyama, T.;Kobayashi, I.;Sugimori, Y.
  13. Jpn. J. Appl. Phys. v.31 no.9B Nakai, T.;Tabuchi, T.;Sawado, Y.;Kobayashi, I.;Sugimori, Y.
  14. Chem. Mater. v.6 Gardiner, R. A.;Gordon, D. C.;Stauf, G. T.;Vaartstra, B. A.
  15. J. Inorg. Nucl. Chem. v.34 Lo, G. Y.-S.;Brubaker, Jr., C. H.
  16. Inorg. Chem. v.11 Smith, G. D.;Caughlan, C. N.;Campbell, J. A.
  17. J. Am. Chem. Soc. v.79 Yamamoto, A.;Kambara, S.
  18. J. Chem. Soc. Bradley, D. C.;Holloway, C. E.
  19. Proc. 9th Internat. Conf. Coord. Chem. Soc. Meeting Bradley, D. C.;Holloway, C. E.;W. Schneider(ed.)
  20. Inorg. Chem. v.6 Serpone, N.;Fay, R. C.
  21. Inorg. Chem. v.15 Dubois, D. L.;Meek, D. W.
  22. Acc. Chem. Soc. v.14 Meek, D. W.;Mazanec, T. J.
  23. Indian J. Chem. v.9 Saxena, U. B.;Rai, A. K.;Mehrotra, R. C.
  24. Bull. Chem. Soc. Jpn. v.41 Hasan, M.;Kumar, K.;Dubey, S.;Misra, S. N.
  25. Indian J. Chem. v.7 Hasan, M.;Misra, S. N.;Kapoor, R. N.
  26. J. Am. Chem. Soc. v.83 Nakamoto, K.;McCarthy, P. J.;Ruby, A.;Martell, A. E.
  27. J. Chem. Phys. v.46 Pinchas, S.;Silver, B. L.;Laulicht, I.
  28. Spectrochim. Acta. v.24A Junge, H.;Musso, H.
  29. Meta β-diketonates and Allied Derivatives Mehrotra, R. C.;Bohra, R.