Abstract
Decay of the spin label attached to cytochrome c or to stearic acid has been measured by electron paramagnetic resonance (EPR) spectroscopy to monitor membrane oxidation induced by cytochrome c-membrane interaction. Binding of cytochrome c sequestered the acidic phospholipids and membrane oxidation was efficient in the order linoleic oleic>stearic acid for a fatty acid chain in the acidic phospholipids. The spin label on cyt c was destroyed at pH 7 whereas that on stearic acid embedded in the membrane was destroyed at pH 4, presumably due to different modes of cyt c-membrane interaction depending on pH. Interestingly, cyt c also interacts with phosphatidylethanolamine, an electrically neutral phospholipid, to cause rapid membrane oxidation. Both EPR and fluorescence measurements indicated that electrostatic interaction is at least partially responsible for the process.