DOI QR코드

DOI QR Code

Theoretical Studies of Surface Diffusion : Multidimensional TST and Effect of Surface Vibrations

  • Published : 19960200

Abstract

We present a theoretical formulation of diffusion process on solid surface based on multidimensional transition state theory (TST). Surface diffusion of single adatom results from hopping processes on corrugated potential surface and is affected by surface vibrations of surface atoms. The rate of rare events such as hopping between lattice sites can be calculated by transition state theory. In order to include the interactions of the adatom with surface vibrations, it is assumed that the coordinates of adatom are coupled to the bath of harmonic oscillators whose frequencies are those of surface phonon modes. When nearest neighbor surface atoms are considered, we can construct Hamiltonians which contain terms for interactions of adatom with surface vibrations for the well minimum and the saddle point configurations, respectively. The escape rate constants, thus the surface diffusion parameters, are obtained by normal mode analysis of the force constant matrix based on the Hamiltonian. The analysis is applied to the diffusion coefficients of W, Ir, Pt and Ta atoms on the bcc(110) plane of W in the zero-coverage limit. The results of the calculations are encouraging considering the limitations of the model considered in the study.

Keywords

References

  1. Ann. Rev. Phys. Chem. v.31 Ehrlich, G.;Stolt, K.
  2. Surface Mobilities on Solid Materials Binh, V. T.(ed.)
  3. Ann. Rev. Phys. Chem. v.38 Doll, J. D.;Voter, A. F.
  4. J. Phys. v.D3 Bassett, D. W.;Parsley, M. J.
  5. Phys. Rev. v.B12 Tsong, T. T.;Kellogg, G.
  6. J. Phys. v.C9 Bassett, D. W.
  7. J. Chem. Phys. v.71 Tully, J. C.;Gilmer, H.;Shugard, M.
  8. J. Phys. v.F11 Mruzik, M. R.;Pound, G. M.
  9. Surf. Sci. v.121 McDowell, H. K.;Doll, J. D.
  10. Surf. Sci. v.134 Doll, J. D.;Freeman, D. L.
  11. J. Chem. Phys. v.82 Voter, A. F.;Doll, J. D.
  12. Surf. Sci. v.259 Lynden-Bell, R. M.
  13. J. Chem. Phys. v.80 Park, S. C.;Bowman, J. M.
  14. J. Chem. Phys. v.89 Jaquet, R.;Miller, W. H.
  15. J. Chem. Phys. v.91 Voter, A. F.;Doll, J. D.
  16. Chem. Phys. Lett. v.148 Wahnstrom, G.;Haug, K.;Metiu, H.
  17. J. Chem. Phys. v.90 Wahnstrom, G.;Haug, K.;Metiu, H.
  18. J. Chem. Phys. v.88 Rice, B. M.;Raff, L. M.;Thopson, D. L.
  19. J. Chem. Phys. Rice, B. M.;Garrett, B. C.;Koszykowski, M. L.;Foiles, S. M.;Daw, M. S.
  20. Rev. Mod. Phys. v.62 Hanggi, P.;Talkner, P.;Borkovec, M.
  21. Theory of Unimolecular Reactions Slater, N. B.
  22. J. Chem. Phys. v.85 Pollak, E.
  23. J. Chem. Phys. v.91 Pollak, E.;Grabert, H.;Hanggi, P.
  24. J. Chem. Phys. v.73 Grote, R. F.;Hynes, J. T.
  25. Surf. Sci. v.91 Flahive, P. G.;Graham, W. R.
  26. Th eory of Lattice Dynamics in the Harmonic Approximation Maradudin, A. A.;Montroll, E. W.;Weiss, G. H.;Ipatova, I. P.
  27. Solid State Theory-Methods and Applications Landsberg, P. T.(ed.)
  28. Dynamical Theory of Crystal Lattice Born, M.;Huang, K.
  29. J. Chem. Phys. v.100 Tsekov, R.;Ruckenstein, E.