DOI QR코드

DOI QR Code

Disintegration of Mesoporous Structures of MCM-41 and MCM-48 in Water


Abstract

It has been found that mesoporous structures of MCM-41 and MCM-48 disintegrate readily in distilled water around 370 K, while the structures can be stable in 100%-steam of 1 atmospheric pressure at much higher temperatures around 820 K. Thus, the structure disintegration is thermodynamically more favorable in water than under the steaming condition. X-ray powder diffraction and magic angle spinning 29Si NMR spectroscopy indicate that the disintegration of the mesoporous structures in water occurs due to silicate hydrolysis.

Keywords

References

  1. Nature v.359 Kresge, C. T.;Leonowicz, M. E.;Roth, W. J.;Vartuli, J. C.;Beck, J. S.
  2. J. Am. Chem. Soc. v.114 Beck, J. S.;Vartuli, J. C.;Roth, W. J.;Leonowicz, M. E.;Kresge, C. T.;Schmitt, K. D.;Chu, C. T.-W.;Olson, D. H.;Sheppard, E. W.;McCullen, S. B.;Higgins, J. B.;Schlenker, J. L.
  3. J. Catal. v.148 Corma, A.;Fornes, V.;Navarro, M. T.;Perez-Pariente, J.
  4. J. Phys. Chem. v.99 Kim, J. M.;Kwak, J. H.;Jun, S.;Ryoo, R.
  5. Microporous Materials v.2 Chen, C.-Y.;Li, H.-Y.;Davis, M. E.
  6. Science v.261 Monnier, A.;Schuth, F.;Huo, Q.;Kumar, D.;Margolese, D.;Maxwell, R. S.;Stucky, G. D.;Krishnamurty, M.;Petroff, P.;Firouzi, A.;Janicke, M.;Chemlka, B. F.
  7. J. Chem. Soc., Chem. Commun. Ryoo, R.;Kim, J. M.
  8. J. Chem. Soc., Chem. Commun. Corma, A.;Navarro, M. T.;Perez-Pariente, J.
  9. J. Am. Chem. Soc. v.116 Corma, A.;Fornes, V.;Garcia, H.;Miranda, M. A.;Sabater, M. J.
  10. J. Catal. v.153 Corma, A.;Martinez, A.;Martinez-Soria, V.;Monton, J. B.
  11. J. Chem. Soc., Chem. Commun. Armengol, E.;Cano, M. L.;Corma, A.;Garcia, H.;Navarro, M. T.
  12. J. Chem. Soc., Chem. Commun. Corma, A.;Iglesias, M.;Sanchez, F.
  13. J. Catal. v.156 Blasco, T.;Corma, A.;Navarro, M. T.;Perez-Pariente, J.
  14. Nature v.368 Tanev, P. T.;Chibwe, M.;Pinnavaia, T. J.
  15. Science v.264 Wu, C.-G.;Bein, T.
  16. Chem. Mater. v.6 Wu, C.-G.;Bein, T.
  17. J. Chem. Soc., Chem. Commun. Kloetstra, K. R.;van Bekkum, H.
  18. Catal. Lett. v.30 Kozhevnikov, I. V.;Sinnema, A.;Jansen, R. J. J.;Pamin, K.;van Bekkum, H.
  19. J. Chem. Research (s) Kloetstra, K. R.;van Bekkum, H.

Cited by

  1. Improvement of Hydrothermal Stability of MCM-41 Using Salt Effects during the Crystallization Process vol.101, pp.3, 1996, https://doi.org/10.1021/jp962500d
  2. Invited article Liquid crystal templating of porous materials vol.26, pp.3, 1996, https://doi.org/10.1080/026782999205100
  3. Adsorption, Thermogravimetric, and NMR Studies of FSM-16 Material Functionalized with Alkylmonochlorosilanes vol.103, pp.30, 1996, https://doi.org/10.1021/jp990314c
  4. Improvement of Hydrothermal Stability of Mesoporous Silica Using Salts: Reinvestigation for Time-Dependent Effects vol.103, pp.30, 1996, https://doi.org/10.1021/jp990394k
  5. Ultrastabile mesoporöse Alumosilicate durch Pfropfsynthesen vol.111, pp.19, 1999, https://doi.org/10.1002/(sici)1521-3757(19991004)111:19<3079::aid-ange3079>3.0.co;2-t
  6. Understanding of the Effect of Al Substitution on the Hydrothermal Stability of MCM-41 vol.103, pp.42, 1999, https://doi.org/10.1021/jp991831y
  7. Improving the Stability of Mesoporous MCM-41 Silica via Thicker More Highly Condensed Pore Walls vol.103, pp.46, 1996, https://doi.org/10.1021/jp992233m
  8. Al Content Dependent Hydrothermal Stability of Directly Synthesized Aluminosilicate MCM-41 vol.104, pp.34, 1996, https://doi.org/10.1021/jp001494p
  9. Enhancement of Hydrothermal Stability and Hydrophobicity of a Silica MCM-48 Membrane by Silylation vol.40, pp.26, 2001, https://doi.org/10.1021/ie0103761
  10. A Detailed Study of Thermal, Hydrothermal, and Mechanical Stabilities of a Wide Range of Surfactant Assembled Mesoporous Silicas vol.14, pp.5, 2002, https://doi.org/10.1021/cm0112892
  11. Mesoporous Silicate−Surfactant Composites with Hydrophobic Surfaces and Tailored Pore Sizes vol.106, pp.39, 1996, https://doi.org/10.1021/jp026252z
  12. Synthesis of ethyl β-naphthyl ether (neroline) using SO42−/Al-MCM-41 mesoporous molecular sieves vol.192, pp.1, 1996, https://doi.org/10.1016/s1381-1169(02)00414-4
  13. Surface tailoring control in micelle templated silica vol.691, pp.26, 1996, https://doi.org/10.1016/j.jorganchem.2006.09.058
  14. Aqueous medium Ullmann reaction over a novel Pd/Ph–Al-MCM-41 as a new route of clean organic synthesis vol.9, pp.3, 1996, https://doi.org/10.1039/b612370h
  15. Diels-Alder Cycloaddition of Cyclopentadiene with Ethylacrylate Catalyzed by Mesoporous Al-MCM-48 and Al-MCM-41 Catalysts vol.29, pp.10, 1996, https://doi.org/10.5012/bkcs.2008.29.10.1993
  16. Highly acidic mesoporous aluminosilicates prepared from preformed HY zeolite in Na2SiO3 alkaline buffer system vol.20, pp.11, 1996, https://doi.org/10.1039/b919842c
  17. Hydrothermal Stability of Mesostructured Cellular Silica Foams vol.114, pp.11, 2010, https://doi.org/10.1021/jp9100784
  18. Synthesis of [Si]-MCM-41 from TEOS and water glass: the water glass-enhanced condensation of TEOS under alkaline conditions vol.54, pp.1, 2010, https://doi.org/10.1007/s10971-010-2161-5
  19. Stability of Zeolites in Hot Liquid Water vol.114, pp.46, 1996, https://doi.org/10.1021/jp104639e
  20. Mesoporous materials in the field of nuclear industry: applications and perspectives vol.36, pp.3, 1996, https://doi.org/10.1039/c1nj20703b
  21. Biobased Chemicals from Conception toward Industrial Reality: Lessons Learned and To Be Learned vol.2, pp.7, 1996, https://doi.org/10.1021/cs300124m
  22. Role of Liquid vs Vapor Water in the Hydrothermal Degradation of SBA-15 vol.116, pp.43, 1996, https://doi.org/10.1021/jp303150e
  23. On the Shelf Life and Aging Stability of Mesoporous Silica: Insights on Thermodynamically Stable MCM-41 Structure from Assessment of 12-Year-Old Samples vol.24, pp.22, 1996, https://doi.org/10.1021/cm302887h
  24. Stability of Amorphous Silica-Alumina in Hot Liquid Water vol.6, pp.12, 2013, https://doi.org/10.1002/cssc.201300532
  25. Iron-containing mesoporous aluminosilicate catalyzed direct alkenylation of phenols: Facile synthesis of 1,1-diarylalkenes vol.9, pp.None, 1996, https://doi.org/10.3762/bjoc.9.6
  26. Ordered Porous Nanomaterials: The Merit of Small vol.2013, pp.None, 1996, https://doi.org/10.1155/2013/257047
  27. Effect of Si/Al ratio and a secondary hydrothermal treatment on the properties of Al-MSU-SFAU vol.20, pp.5, 2013, https://doi.org/10.1007/s10934-013-9725-z
  28. Hydrophobic microporous and mesoporous oxides as Bronsted and Lewis acid catalysts for biomass conversion in liquid water vol.4, pp.9, 1996, https://doi.org/10.1039/c4cy00712c
  29. Steam Stable Mesoporous Silica MCM-41 Stabilized by Trace Amounts of Al vol.6, pp.3, 2014, https://doi.org/10.1021/am404911x
  30. Hydrothermally stable heterogeneous catalysts for conversion of biorenewables vol.16, pp.11, 1996, https://doi.org/10.1039/c4gc01152j
  31. Hydrothermally stable heterogeneous catalysts for conversion of biorenewables vol.16, pp.11, 1996, https://doi.org/10.1039/c4gc01152j
  32. Conceptual Frame Rationalizing the Self-Stabilization of H-USY Zeolites in Hot Liquid Water vol.5, pp.2, 1996, https://doi.org/10.1021/cs501559s
  33. 거대기공 구조-역오팔 또는 중공 구조를 갖는 KIT-1 메조포러스 실리케이트의 제조 vol.23, pp.3, 1996, https://doi.org/10.4150/kpmi.2016.23.3.189
  34. Phenomena Affecting Catalytic Reactions at Solid–Liquid Interfaces vol.6, pp.12, 1996, https://doi.org/10.1021/acscatal.6b02532
  35. Thermal and Hydrothermal Stability of Hierarchical Porous Silica Materials vol.2019, pp.27, 1996, https://doi.org/10.1002/ejic.201900228
  36. Mesoporous Aluminosilicate Nanofibers with a Low Si/Al Ratio as Acidic Catalyst for Hydrodeoxygenation of Phenol vol.11, pp.16, 1996, https://doi.org/10.1002/cctc.201900522
  37. Catalytic nanosponges of acidic aluminosilicates for plastic degradation and CO 2 to fuel conversion vol.11, pp.1, 2020, https://doi.org/10.1038/s41467-020-17711-6
  38. Mesoporous Zeolitic Materials (MZMs) Derived From Zeolite Y Using a Microwave Method for Catalysis vol.8, pp.None, 2020, https://doi.org/10.3389/fchem.2020.00482
  39. Improving Hydrothermal Stability of Supported Metal Catalysts for Biomass Conversions: A Review vol.11, pp.9, 1996, https://doi.org/10.1021/acscatal.1c00197