References
- Nature v.359 Kresge, C. T.;Leonowicz, M. E.;Roth, W. J.;Vartuli, J. C.;Beck, J. S.
- J. Am. Chem. Soc. v.114 Beck, J. S.;Vartuli, J. C.;Roth, W. J.;Leonowicz, M. E.;Kresge, C. T.;Schmitt, K. D.;Chu, C. T.-W.;Olson, D. H.;Sheppard, E. W.;McCullen, S. B.;Higgins, J. B.;Schlenker, J. L.
- J. Catal. v.148 Corma, A.;Fornes, V.;Navarro, M. T.;Perez-Pariente, J.
- J. Phys. Chem. v.99 Kim, J. M.;Kwak, J. H.;Jun, S.;Ryoo, R.
- Microporous Materials v.2 Chen, C.-Y.;Li, H.-Y.;Davis, M. E.
- Science v.261 Monnier, A.;Schuth, F.;Huo, Q.;Kumar, D.;Margolese, D.;Maxwell, R. S.;Stucky, G. D.;Krishnamurty, M.;Petroff, P.;Firouzi, A.;Janicke, M.;Chemlka, B. F.
- J. Chem. Soc., Chem. Commun. Ryoo, R.;Kim, J. M.
- J. Chem. Soc., Chem. Commun. Corma, A.;Navarro, M. T.;Perez-Pariente, J.
- J. Am. Chem. Soc. v.116 Corma, A.;Fornes, V.;Garcia, H.;Miranda, M. A.;Sabater, M. J.
- J. Catal. v.153 Corma, A.;Martinez, A.;Martinez-Soria, V.;Monton, J. B.
- J. Chem. Soc., Chem. Commun. Armengol, E.;Cano, M. L.;Corma, A.;Garcia, H.;Navarro, M. T.
- J. Chem. Soc., Chem. Commun. Corma, A.;Iglesias, M.;Sanchez, F.
- J. Catal. v.156 Blasco, T.;Corma, A.;Navarro, M. T.;Perez-Pariente, J.
- Nature v.368 Tanev, P. T.;Chibwe, M.;Pinnavaia, T. J.
- Science v.264 Wu, C.-G.;Bein, T.
- Chem. Mater. v.6 Wu, C.-G.;Bein, T.
- J. Chem. Soc., Chem. Commun. Kloetstra, K. R.;van Bekkum, H.
- Catal. Lett. v.30 Kozhevnikov, I. V.;Sinnema, A.;Jansen, R. J. J.;Pamin, K.;van Bekkum, H.
- J. Chem. Research (s) Kloetstra, K. R.;van Bekkum, H.
Cited by
- Improvement of Hydrothermal Stability of MCM-41 Using Salt Effects during the Crystallization Process vol.101, pp.3, 1996, https://doi.org/10.1021/jp962500d
- Invited article Liquid crystal templating of porous materials vol.26, pp.3, 1996, https://doi.org/10.1080/026782999205100
- Adsorption, Thermogravimetric, and NMR Studies of FSM-16 Material Functionalized with Alkylmonochlorosilanes vol.103, pp.30, 1996, https://doi.org/10.1021/jp990314c
- Improvement of Hydrothermal Stability of Mesoporous Silica Using Salts: Reinvestigation for Time-Dependent Effects vol.103, pp.30, 1996, https://doi.org/10.1021/jp990394k
- Ultrastabile mesoporöse Alumosilicate durch Pfropfsynthesen vol.111, pp.19, 1999, https://doi.org/10.1002/(sici)1521-3757(19991004)111:19<3079::aid-ange3079>3.0.co;2-t
- Understanding of the Effect of Al Substitution on the Hydrothermal Stability of MCM-41 vol.103, pp.42, 1999, https://doi.org/10.1021/jp991831y
- Improving the Stability of Mesoporous MCM-41 Silica via Thicker More Highly Condensed Pore Walls vol.103, pp.46, 1996, https://doi.org/10.1021/jp992233m
- Al Content Dependent Hydrothermal Stability of Directly Synthesized Aluminosilicate MCM-41 vol.104, pp.34, 1996, https://doi.org/10.1021/jp001494p
- Enhancement of Hydrothermal Stability and Hydrophobicity of a Silica MCM-48 Membrane by Silylation vol.40, pp.26, 2001, https://doi.org/10.1021/ie0103761
- A Detailed Study of Thermal, Hydrothermal, and Mechanical Stabilities of a Wide Range of Surfactant Assembled Mesoporous Silicas vol.14, pp.5, 2002, https://doi.org/10.1021/cm0112892
- Mesoporous Silicate−Surfactant Composites with Hydrophobic Surfaces and Tailored Pore Sizes vol.106, pp.39, 1996, https://doi.org/10.1021/jp026252z
- Synthesis of ethyl β-naphthyl ether (neroline) using SO42−/Al-MCM-41 mesoporous molecular sieves vol.192, pp.1, 1996, https://doi.org/10.1016/s1381-1169(02)00414-4
- Surface tailoring control in micelle templated silica vol.691, pp.26, 1996, https://doi.org/10.1016/j.jorganchem.2006.09.058
- Aqueous medium Ullmann reaction over a novel Pd/Ph–Al-MCM-41 as a new route of clean organic synthesis vol.9, pp.3, 1996, https://doi.org/10.1039/b612370h
- Diels-Alder Cycloaddition of Cyclopentadiene with Ethylacrylate Catalyzed by Mesoporous Al-MCM-48 and Al-MCM-41 Catalysts vol.29, pp.10, 1996, https://doi.org/10.5012/bkcs.2008.29.10.1993
- Highly acidic mesoporous aluminosilicates prepared from preformed HY zeolite in Na2SiO3 alkaline buffer system vol.20, pp.11, 1996, https://doi.org/10.1039/b919842c
- Hydrothermal Stability of Mesostructured Cellular Silica Foams vol.114, pp.11, 2010, https://doi.org/10.1021/jp9100784
- Synthesis of [Si]-MCM-41 from TEOS and water glass: the water glass-enhanced condensation of TEOS under alkaline conditions vol.54, pp.1, 2010, https://doi.org/10.1007/s10971-010-2161-5
- Stability of Zeolites in Hot Liquid Water vol.114, pp.46, 1996, https://doi.org/10.1021/jp104639e
- Mesoporous materials in the field of nuclear industry: applications and perspectives vol.36, pp.3, 1996, https://doi.org/10.1039/c1nj20703b
- Biobased Chemicals from Conception toward Industrial Reality: Lessons Learned and To Be Learned vol.2, pp.7, 1996, https://doi.org/10.1021/cs300124m
- Role of Liquid vs Vapor Water in the Hydrothermal Degradation of SBA-15 vol.116, pp.43, 1996, https://doi.org/10.1021/jp303150e
- On the Shelf Life and Aging Stability of Mesoporous Silica: Insights on Thermodynamically Stable MCM-41 Structure from Assessment of 12-Year-Old Samples vol.24, pp.22, 1996, https://doi.org/10.1021/cm302887h
- Stability of Amorphous Silica-Alumina in Hot Liquid Water vol.6, pp.12, 2013, https://doi.org/10.1002/cssc.201300532
- Iron-containing mesoporous aluminosilicate catalyzed direct alkenylation of phenols: Facile synthesis of 1,1-diarylalkenes vol.9, pp.None, 1996, https://doi.org/10.3762/bjoc.9.6
- Ordered Porous Nanomaterials: The Merit of Small vol.2013, pp.None, 1996, https://doi.org/10.1155/2013/257047
- Effect of Si/Al ratio and a secondary hydrothermal treatment on the properties of Al-MSU-SFAU vol.20, pp.5, 2013, https://doi.org/10.1007/s10934-013-9725-z
- Hydrophobic microporous and mesoporous oxides as Bronsted and Lewis acid catalysts for biomass conversion in liquid water vol.4, pp.9, 1996, https://doi.org/10.1039/c4cy00712c
- Steam Stable Mesoporous Silica MCM-41 Stabilized by Trace Amounts of Al vol.6, pp.3, 2014, https://doi.org/10.1021/am404911x
- Hydrothermally stable heterogeneous catalysts for conversion of biorenewables vol.16, pp.11, 1996, https://doi.org/10.1039/c4gc01152j
- Hydrothermally stable heterogeneous catalysts for conversion of biorenewables vol.16, pp.11, 1996, https://doi.org/10.1039/c4gc01152j
- Conceptual Frame Rationalizing the Self-Stabilization of H-USY Zeolites in Hot Liquid Water vol.5, pp.2, 1996, https://doi.org/10.1021/cs501559s
- 거대기공 구조-역오팔 또는 중공 구조를 갖는 KIT-1 메조포러스 실리케이트의 제조 vol.23, pp.3, 1996, https://doi.org/10.4150/kpmi.2016.23.3.189
- Phenomena Affecting Catalytic Reactions at Solid–Liquid Interfaces vol.6, pp.12, 1996, https://doi.org/10.1021/acscatal.6b02532
- Thermal and Hydrothermal Stability of Hierarchical Porous Silica Materials vol.2019, pp.27, 1996, https://doi.org/10.1002/ejic.201900228
- Mesoporous Aluminosilicate Nanofibers with a Low Si/Al Ratio as Acidic Catalyst for Hydrodeoxygenation of Phenol vol.11, pp.16, 1996, https://doi.org/10.1002/cctc.201900522
- Catalytic nanosponges of acidic aluminosilicates for plastic degradation and CO 2 to fuel conversion vol.11, pp.1, 2020, https://doi.org/10.1038/s41467-020-17711-6
- Mesoporous Zeolitic Materials (MZMs) Derived From Zeolite Y Using a Microwave Method for Catalysis vol.8, pp.None, 2020, https://doi.org/10.3389/fchem.2020.00482
- Improving Hydrothermal Stability of Supported Metal Catalysts for Biomass Conversions: A Review vol.11, pp.9, 1996, https://doi.org/10.1021/acscatal.1c00197