J. Korea Soc. of Math. Edu. (Series B)
The Pure and Applied Mathematics 3, No. 2 (1996) pp. 155-162

SOME GENERALIZATIONS OF M-FINITE BANACH SPACES

JAE SUN CHA AND KAP HUN JUNG

ABSTRACT. We will show that let X and Y be M-finite Banach spaces with canonical M-decompositions $X\cong\prod_{i=1}^{r_\infty}X_i^{n_i}$ and $Y\cong\prod_{j=1}^{\tilde{r}_\infty}\tilde{Y}_j^{m_j}$, respectively and M and N nonzero locally compact Hausdorff spaces. Then $I:C_0(M,X)\to C_0(N,Y)$ is an isometrical isomorphism if and only if $r=\tilde{r}$ and there are permutation and homeomorphisms and continuous maps such that $I=I_{N,Y}^{-1}\circ I_{\omega^{-1}}\circ (\prod_{i=1}^{r}I_{t_i,u_i})\circ I_{M,X}$.

1. Introduction

Throughout of this note X be a nonzero Banach space and M a nonempty locally compact Hausdorff space. We say that a Banach space X is M-finite if Z(X) is finite-dimensional. It follows that $Z(\prod_{i=1}^{n_{\infty}} X_i) \cong \prod_{i=1}^{n_{\infty}} Z(X_i)$ so that finite product is M-finite Banach spaces are also M-finite. In particular, $\prod_{i=1}^{n_{\infty}} X_i$ is M-finite if the centralizers of the X_i are one-dimensional.

Let X be a Banach space. For $T \in Mult(X)$, we say that $S \in Mult(X)$ is an adjoint for T if $a_S = \tilde{a}_T$. If T adjoint, then this operator is uniquely determined, it will be denoted by T^* . Z(X), the centralizer of X is the set of those multipliers T for which an adjoint T^* exist.

In this note, we will prove that some results of M-structure of $C_0(M, X)$ and Banch space with the local centralizer norming system and some generalization of M-finite Banach spaces.

Received by the editors Nov. 11, 1996 and, in revised form, Dec. 31, 1996.

2. Preliminaries

Definition 2.1. A function module is a triple $(K, (X_k)_{k \in K}, \tilde{X})$, where K is a nonempty compact Hausdorff space, $(X_k)_{k \in K}$ a family of Banach spaces and X a closed subspace of $\prod_{k \in K}^{\infty} X_k$ such that the following conditions are satisfied:

- (1) $hx \in X$ for x in X and h in CK ((hx)(k) = h(k)x(k)). (i.e., X is a CK-module)
 - (2) $k \to ||x(k)||$ is an upper semicontinuous function for every x in X.
 - (3) $X_k = \{x(k) | x \in X\}$ for every $k \in K$.
 - (4) $\{k|k \in K, X_k \neq \{0\}\}^- = K$ (i.e. dense)

Definition 2.2. Let X be a Banach space and $R_i = [\rho_i, (K_i, (X_k^i)_{k \in K_i, X_i})], (i = 1, 2)$ function module representations of X.

(1) We say that R_1 is finer than $R_2(R_2 < R_1)$ if there are continuous map t from K_1 onto K_2 and a family of isometric isomorphisms $S_l: X_1|_{t^{-1}(l)} \to X_l^2$. (all $l \in K_2$; for the definition of $X_1|_{t^{-l}(l)}$) such that $S \circ \rho_1 = \rho_2$ (where $(S_{x_1})(l) = S_l(x_1|_{t^{-1}(l)})$) for $x_1 \in X_1$ and $l \in K_2$):

$$X_{1} \hookrightarrow \prod_{k \in K_{1}}^{\infty} X_{k}^{1}$$

$$X \qquad \downarrow S$$

$$\rho_{2} \searrow \qquad \qquad X_{2} \hookrightarrow \prod_{l \in K_{2}} X_{l}^{2}$$

(2) R_1 and R_2 are said to be equivalent $(R_2 \approx R_1)$ if $R_2 < R_1$ and, in addition, the mapping t in (1) is a homeomorphism.

Lemma 2.3.[5]. The idempotent elements of Z(X) are just the M-projections of X.

Lemma 2.4.[4]. Let X be a Banach space such that Z(X) is one-dimensional. Then all M-summands of X are trivial and the trivial representation of X (in $\prod_{k\in K}^{\infty} X_k$ with $K=\{1\}$ and $X_1=X$) is a maximal function module representation.

Lemma 2.5.[4]. (1) Suppose that X has no nontrivial M-ideals. Then the M-ideals of $C_0(M,X)$ are the subspaces $Y_C = \{f | f \in C_0(M,X), f|_C = 0\}$ ($C \subset M,C$ a closed subset).

(2) If X has no nontrivial M-summands, then the M-summands of $C_0(M, X)$ are the subspaces Y_C , where $C \subset M$, C closed and open.

Lemma 2.6. Suppose that $(K,(X_k)_{k\in K},X)$ and $(L,(Y_l)_{l\in L},Y)$ are function modules such that $Z(X)=\{M_h|h\in CK\}$ and $Z(Y)=\{M_h|h\in CL\}$. Then for every isometric isomorphism $I:X\to Y$ there are a homeomorphism $\tilde{t}:L\to K$ and a family of isometric isomorphisms $S_l:X_{\tilde{t}(l)}\to Y_l$ (all $l\in L$) such that $(Ix)(l)=S_l(x(\tilde{t}(l)))$ for $x\in X$ and $l\in L$. In particular, X and Y are isometrically isomorphic only if K and L are homeomorphic and the families $(X_k)_{k\in K}$ and $(Y_l)_{l\in L}$ contain the same spaces (modulo isometric isomorphism).

Proof. Let \tilde{R} be the identical representation of X in $\prod_{k\in K}^{\infty}X_k$ and R the representation $[I,(L,(Y_l)_{l\in L},Y)]$ of X. Since the algebras $Z_{\rho}(X)$ are Z(X) for both representations it follows that $R\approx \tilde{R}$. With S as in Definition 2.2. we have $S\tilde{\rho}=I$ so that (since $\tilde{\rho}=Id$)S=I. The assertion follows with $t,(S_l)_{l\in L}$ as in Definition 2.2. and $\tilde{t}=t^{-1}$.

Lemma 2.7. Let X and Y be Banach spaces, M and N locally compact Hausdorff spaces. Further suppose that $t: N \to M$ is a homeomorphism and that $u: N \to [X,Y]_{iso}$ is a continuous map $([X,Y]_{iso}$ denotes the set of isometric isomorphisms from X to Y, provided with the strong operator topology). Then $I_{t,u}: C_0(M,X) \to C_0(N,Y)$ defined by $(I_{t,u}f)(w) = [u(w)]f(t(w))$ (all $f \in C_0(M,X), w \in N$) is an isometric isomorphism.

Proof. For $f \in C_0(M, X), w \in N$ and $\epsilon > 0$ choose a neighborhood W of w_0 such that $||f(t(w)) - f(t(w_0))|| \le \epsilon$ and $||\{u(w) - u(w_0)\}[f(t(w_0))]|| \le \epsilon$ for $w \in W$. It follows that

$$\begin{aligned} &\|(I_{t,u}f)(w) - (I_{t,u}f)(w_0)\| \\ &= \|u(w)[f(t(w)) - f(t(w_0))] + [u(w) - u(w_0)][f(t(w_0))]\| \le 2\epsilon \end{aligned}$$

for these w so that $I_{t,u}f$ is continuous at w_0 . Since t^{-1} maps compact sets into compact sets and $\|u(w)\| \le 1$ for every $w \in N, I_{t,u}f$, vanishes at infinity, i.e., $I_{t,u}$ is well-defined. It is clear that $I_{t,u}$ is linear and isometric and it remains to show that $I_{t,u}$ has an inverse. We note that $u^{-1}: N \to [Y,X]_{iso}, u^{-1}(w) = (u(w))^{-1}$ is continuous for $w_0 \in N, y_0 \in Y$ and for $\epsilon > 0$ choose $x_0 \in X$ such that $u(w_0)x_0 = y_0$ and a neighborhood W of w_0 such that $\|u(w)x_0 - u(w_0)x_0\| \le \epsilon$ for $w \in W$ it follows that

$$||u^{-1}(w)y_0 - u^{-1}(w_0)y_0||$$

= $||u(w)(u^{-1}(w)x_0 - x_0)|| = ||u(w_0)x_0 - u(w)x_0|| \le \epsilon$

for these w so that $w \mapsto u^{-1}(w)y_0$ is continuous. By the first part of the proof this implies that $I_{\tilde{t},\tilde{u}}g(\tilde{t}=t^{-1},\tilde{u}=u^{-1}\circ t^{-1})$ is contained in $C_0(M,X)$ for every $g\in C_0(N,Y)$, $I_{\tilde{t},\tilde{u}}$ which is defined similarly to $I_{t,u}$. It is obvious that $I_{\tilde{t},\tilde{u}}$ is an inverse of $I_{t,u}$.

Definition 2.8. A function module property is a rule P which assigns to every function module $(K,(X_k)_{k\in K},X)$ such that $Z(X)=\{M_h|h\in CK\}$ a subset $P(K,(X_k)_{k\in K},X)$ of $K^*(=\{k|k\in K,X_k\neq\{0\}\})$ such that the following holds: If $(K,(X_k)_{k\in K},X)$ and $(L,(Y_l)_{l\in L},L)$ are function modules such that $Z(X)=\{M_h|h\in CK\}$ and $Z(Y)=\{M_g|g\in CL\}$ and if $I:X\to Y$ is an isometric isomorphism, then $t(P(L,(Y_l)_{l\in L},Y))=P(K,(X_k)_{k\in K},X)$ where t is the homeomorphism from L to K.

Definition 2.9. (1) Let X_1, \dots, X_n be Banach spaces and $\omega : \{1, \dots, n\} \to \{1, \dots, n\}$ a permutation. By $I_{\omega} : \prod_{i=1}^{n_{\infty}} X_i \to \prod_{i=1}^{n_{\infty}} X_{\omega(i)}$ we denote the isometric isomorphism

$$(x_1,\cdots,x_n)\mapsto (x_{\omega(1)},\cdots,x_{\omega(n)})$$

(2) For Banach spaces Y, Y_1, \dots, Y_n and locally compact Hausdorff spaces M, there are natural isometric isomorphisms

$$C_0(M, Y^n) \cong C_0(nM, Y), \quad C_0(M, \prod_{i=1}^{n_\infty} Y_i) \cong \prod_{i=1}^{n_\infty} C_0(M, Y_i)$$

where nM is the disjoint union of n copies of M. Thus, for every M-finite Banach space $X \cong \prod_{i=1}^{r_{\infty}} \tilde{X}_{i}^{n_{i}}$ there is a natural isometric isomorphism (which will be denoted by $I_{M,X}$) from $C_{0}(M,X)$ onto $\prod_{i=1}^{r_{\infty}} C_{0}(n_{i}M,X_{i})$.

Lemma 2.10. Let $X_1, \dots, X_r, Y_1, \dots, Y_{\tilde{r}}$ be nonzero Banach spaces such that $Z(X_i)$ = $Id, Z(Y_j) = Id$ for $i = 1, \dots, r, j = 1, \dots, \tilde{r}$ and $X_i \not\cong X_{i'}$ if $i \neq i'$ and $Y_j \not\cong Y_{j'}$, if $j \neq j'$. Further suppose that M_1, \dots, M_r and $N_1, \dots, N_{\tilde{r}}$ are nonempty locally compact Hausdorff spaces and

$$\hat{I}: \prod_{i=1}^{r_{\infty}} C_0(M_i, X_i) \to \prod_{j=1}^{\tilde{r}_{\infty}} C_0(N_j, Y_j)$$

is an isometric isomorphism. Then $r = \tilde{r}$ and there are a permutation $\omega : \{1, \dots, r\} \rightarrow \{1, \dots, r\}$ and homeomorphisms $t_i : N_{\omega(i)} \rightarrow M_i$ and continuous maps

$$u_i: N_{\omega(i)} \to [X_i, Y_{\omega(i)}]_{iso} \quad (i = 1, \dots, r)$$

such that $\hat{I} = I_{\omega^{-1}} \circ (\prod_{i=1}^r I_{t_i,u_i})$ (I_{t_i,u_i} as in Lemma 2.7.):

$$\prod_{i=1}^{r_{\infty}} C_0(M_i, X_i) \xrightarrow{\hat{I}} \prod_{j=1}^{\tilde{r}_{\infty}} C_0(N_j, Y_j)$$

$$\prod_{i=1}^{r_{\infty}} C_0(N_{\omega(i)}, Y_{\omega(i)})$$

Proof. We will prove that for every $i_0 \in \{1, \dots, r\}$ there is an $j_0 \in \{1, \dots, \tilde{r}\}$ such that $X_{i_0} \cong Y_{j_0}$. For simplicity we will regard the $C_0(M_i, X_i) = J_i$ (the $C_0(N_j, Y_j) = J_j^*$) as subspaces of

$$\prod_{i=1}^{r_{\infty}} C_0(M_i, X_i) \qquad (\text{of } \prod_{j=1}^{\tilde{r}_{\infty}} C_0(N_j, Y_j)).$$

Let $i_0 \in \{1, \dots, n\}$ be arbitrary. Since images of M-summands under isometric isomorphisms are also M-summands, $\hat{I}(J_{i_0})$ must be an M-summand in $\prod_{j=1}^{\tilde{r}_{\infty}} J_j^*$ and thus of the form $\prod_{j=1}^{\tilde{r}} (J_j^* \cap \hat{I}(J_{i_0}))$. Since $\hat{I}(J_{i_0})$ is nonzero, there must be a $j_0 \in \{1, \dots, \tilde{r}\}$ such that $J^* = J_{j_0}^* \cap \hat{I}(J_{i_0})$ is a nonzero M-summand in $J_{j_0}^*$. By Lemma 2.4. and Lemma 2.5, there is a closed and open subset C^* of N_{j_0} such that

$$J^* = \{f | f \in C_0(N_{i_0}, Y_{i_0}), f|_{C^*} = 0\} \cong C_0(N_{i_0} \setminus C^*, Y_{i_0}).$$

Similarly we obtain a closed and open subset C of M_{i_0} such that

$$\hat{I}^{-1}(J^*) \cong C_0(M_i \backslash C, X_{i_0}).$$

Hence $C_0(M_i \backslash C, X_{i_0}) \cong C_0(N_{j_0} \backslash C^*, Y_{j_0})$ and since $M_{i_0} \backslash C \neq \emptyset \neq N_{j_0} \backslash C^*, X_{i_0} \cong Y_{j_0}$. Since the X_i and the Y_j are pairwise not isometrically isomorphic, the map $\omega: \{1, \dots, r\} \to \{1, \dots, \tilde{r}\}, \omega(i_0) = j_0$ is well-defined and bijective (so that, in particular, $r = \tilde{r}$). We have $\hat{I}(J_i) = J_{\omega(i)}^*$ (since $\hat{I}(J_i) \cap J_j^* = \{0\}$ for $j \neq \omega(i)$, i.e., there are homeomorphisms $t_1: N_{\omega(i)} \to M_i$ and continuous maps $u_i: N_{\omega(i)} \to [X_i, Y_{\omega(i)}]_{iso}$ such that $\hat{I}|_{J_i} = I_{t_i, u_i}$. It is clear that $\hat{I} = I_{\omega^{-1}} \circ (\prod_{i=1}^r I_{t_i, u_i})$.

3. Main Results

Theorem 3.1. Let X and Y be M-finite Banach spaces with canonical M - decompositions $X \cong \prod_{i=1}^{r_{\infty}} \tilde{X}_{i}^{n_{i}}$ and $Y \cong \prod_{j=1}^{\bar{r}_{\infty}} \tilde{Y}_{j}^{m_{j}}$, respectively and M and N nonzero locally compact Hausdorff spaces. Then $I: C_{0}(M,X) \to C_{0}(N,Y)$ is an isometrical isomorphism if and only if $r = \tilde{r}$ and there are a permutation $\omega: \{1, \dots, r\} \to \{1, \dots, r\}$ and homeomorphisms $t_{i}: m_{\omega}(i)N \to n_{i}M$ and continuous maps $u_{i}: m_{\omega(i)}N \to [X_{i}, Y_{\omega(i)}]_{iso} (i = 1, \dots, r)$ such that

$$I = I_{N,Y}^{-1} \circ I_{\omega}^{-1} \circ (\prod_{i=1}^{r} I_{t_{i},u_{i}}) \circ I_{M,X}(I_{t,u} \text{ as in Lemma 2.7.}):$$

$$C_{0}(M,X) \xrightarrow{I} C_{0}(N,Y)$$

$$I_{M,X} \downarrow \qquad \qquad \uparrow I_{N,Y}^{-1}$$

$$\prod_{i=1}^{r_{\infty}} C_{0}(n_{i}M,X_{i}) \qquad \qquad \prod_{j=1}^{\tilde{r}_{\infty}} C_{0}(m_{i}N,Y_{j})$$

$$\prod_{i=1}^{r} I_{t_{i},u_{i}} \searrow \qquad \nearrow I_{\omega^{-1}}$$

$$\prod_{i=1}^{r_{\infty}} C_{0}(m_{\omega(i)}N,Y_{\omega(i)})$$

Proof. (\Longrightarrow) By Lemma 2.10, we have

$$\hat{I} = I_{N,Y} \circ I \circ I_{M,X}^{-1} : \prod_{i=1}^{r_{\infty}} C_0(n_i M, \tilde{X}_i) \to \prod_{j=1}^{\tilde{r}_{\infty}} C_0(m_j N, \tilde{Y}_i) :$$

$$\prod_{i=1}^{r_{\infty}} C_0(M_i, X_i) \xrightarrow{\hat{I}} \prod_{j=1}^{\tilde{r}_{\infty}} C_0(N_j, Y_j)$$

$$I_{M,X}^{-1} \downarrow \uparrow I_{M,X} \quad I_{N,Y}^{-1} \downarrow \uparrow I_{N,Y}$$

$$C_0(M,X) \longrightarrow C_0(N,Y)$$

From $\hat{I} = I_{\omega^{-1}} \circ \prod_{i=1}^r I_{t_i,u_i}$ and the above diagram , we have

$$I_{\omega^{-1}} \circ \prod_{i=1}^{r} I_{t_{i},u_{i}} = I_{N,Y} \circ I \circ I_{M,X}^{-1}$$

$$I_{N,Y}^{-1} \circ I_{\omega^{-1}} \circ (\prod I_{t_{i},u_{i}}) = I \circ I_{M,X}^{-1}$$

$$I_{N,Y}^{-1} \circ I_{\omega^{-1}} \circ (\prod I_{t_{i},u_{i}}) \circ I_{M,X} = I$$

By Lemma 2.7, $I = I_{N,Y}^{-1} \circ I_{\omega^{-1}} \circ (\prod_{i=1}^r I_{t_i,u_i}) \circ I_{M,X}$ is an isometric isomorphism. (\longleftarrow) It is clear from Lemma 2.10.

Theorem 3.2. Let X and Y be M-finite Banach spaces with canonical M - decompositions $X \cong \prod_{i=1}^{r_{\infty}} \tilde{X}_{i}^{n_{i}}$ and $Y \cong \prod_{j=1}^{\tilde{r}_{\infty}} \tilde{Y}_{j}^{m_{j}}$, respectively, and M and N nonzero locally compact Hausdorff spaces. Then $C_{0}(M,X) \cong C_{0}(N,Y)$ if and only if $r = \tilde{r}$, and there is a permutation $\omega : \{1, \dots, r\} \to \{1, \dots, r\}$ such that $n_{i}M \cong m_{\omega(i)}N$ and $\tilde{X}_{i} \cong \tilde{Y}_{\omega(i)}$ for every $i \in \{1, \dots, r\}$.

Proof. (\Longrightarrow) This is a consequence of Theorem 3.1.

(\iff) Since X_i and Y_j are not pairwise isometrically isomorphic, the map ω : $\{1,\cdots,r\} \to \{1,\cdots,\tilde{r}\}, \omega(i_0)=j_0$ is well-defined and bijective, therefore $r=\tilde{r}$. Hence, there are homeomorphism $t_i:m_{\omega(t)}N\to n_iM$ and continuous maps $u_i:m_{\omega(i)}N\to [X_i,Y_{\omega(i)}]_{iso}$ such that $I=I_{N,Y}^{-1}\circ I_{\omega}^{-1}\circ (\prod_{i=1}^r I_{t_i,u_i})\circ I_{M,X}$. And so $X_i\cong Y_{\omega(t)}$. Thus $\tilde{X}_i\cong \tilde{Y}_{\omega(t)}$ for every $i\in\{1,\cdots,r\}$.

REFERENCES

- 1. E.M.Alfsen and E.G.Effros, Structure in real Banach spaces I, Ann. of Math. 96 (1972).
- 2. E.M.Alfsen and E.G.Effros, Structure in real Banach spaces II, Ann. of Math. 96 (1972).
- 3. B.Beauzamy, Introduction to Banach spaces and their Geometry, North-Holland publishing company-Amsterdam, New York, Oxford. (1982).
- 4. E.Behrends, On the Banach-Stone theorem, Math. Annalen 233 (1978).
- 5. M.Cambern, A generalized Banach-Stone theorem, Proc. of the Amer. Math. Soc. 17 (1966).
- 6. H.E.Lacey, The isometric theory of classical Banach spaces, Springer-Verlag, Berlin (1974).
- J.Lindenstrauss and L.Tzafriri, Classical Banach spaces I, Sequence space, Springer-Verlag (1977).
- 8. J.Lindenstrauss and L.Tzafriri, Classical Banach spaces II, Function space, Springer-Verlag (1979).

Department of Mathematics Education, Dankook University, Seoul, 140-714, Korea

DEPARTMENT OF MATHEMATICS, DANKOOK UNIVERSITY, SEOUL, 140-714, KOREA