Synergism among Endo-xylanase, $\beta$-Xylosidase, and Acetyl Xylan Esterase from Bacillus stearothermophilus

  • Suh, Jung-Han (Department of Genetic Engineering, College of Natural Resources, Korea University) ;
  • Choi, Yong-Jin (Department of Genetic Engineering, College of Natural Resources, Korea University)
  • Published : 1996.06.01

Abstract

Synergic effects among endo-xylanase, $\beta$-xylosidase, and acetyl xylan esterase of Bacillus stearothermophilus in the hydrolysis of xylan were studied by using birchwood, oat spelt, and acetylated xylan as substrates. Synergism between endo-xylanase and $\beta$-xylosidase was observed on all three substrates tested, indicating that $\beta$-xylosidase enhanced the production of xylose by relieving the end-product inhibition upon endo-xylanase conferred by xylooligomers. Endo-xylanase and $\beta$-xylosidase also showed synergism with acetyl xylan esterase in the hydrolysis of birchwood and acetylated xylan, while no synergic effect was detected in oat spelt xylan hydrolysis. Thus, the hydrolysis of xylan containing acetic acid side chains required the action of acetyl xylan esterase, which eliminated the steric hindrance of the side chains, leading to the better hydrolysis by endo-xylanase and $\beta$-xylosidase , and the acetyl xylan esterase activity was also enhanced by endo-xylanase and $\beta$-xylosidase for the latter enzymes provided acetyl xylan esterase with shorter xylan oligomers, the better substrate for the enzyme.

Keywords