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A Single Server Queue Operating under N-Policy

with a Renewal Break down Process
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1. Introduction

In many realistic queueing situations, customers arrive in groups rather than
individually and a server is subject to breakdown. If the breakdown is unpredictable in
nature and the server cannot operate immediately after a breakdown occurs, the
customers waiting in front of the server cannot be served during the breakdown period
and the following repair period. in such a case, it is important to understand how the
breakdown will affect the performance of the system. This phenomenon can be
observed, for example, in fault-tolerant computer system[l10] and in database
management system[9][15]. Also, an important model is a production-inventory
system[14] where the server is a facility that produces items and the requests for
demands are arriving customers.
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Server breakdown models has been investigated by many authors with different
assumptions. White and Christie first studied this model, who considered the case with
exponential sevice, repair, and inter-breakdown time distributions. Their results were
extended by Gaverl4], Keilson[8] and Jaiswal{7] to models with general service and
repair time distrivutions but exponential inter-breakdown time distribution. For the
variants of these model, Shogan[14] deals with a M*/E*/1 queue where the server is
available or not, and Sumita et al.[15] also worked on the case of breakdowns occurred
according to nonhomogeneous poisson process. Ibe and Trivedil6] considered a queueing
model of unreliable polling system and obtained an approximate mean delay of
customers in the system. An important assumption of the articles mentioned above is
that inter-breakdown time is exponentially distributed. Recently, Federgruen and
Green[3] derived a bound and approximations for the system size and mean waiting tim
for an M/G/1 queue whose unreliable server alternates between on(operational) periods
and off(failed) periods of arbitrary random duration. Senguptal13] generalized their result
so that the arrival rate and service time could be dependent on on-off periods. But his
result is also approximation.

In this paper, we consider a single server, first come, first served unreliable
queueing system operating under N control policy. We extend the previous result of
Gaver{4]. Our model allows the presence of general inter-breakdown time distribution.
This model generally provides satisfactory model to many realistic situation such as
inventory systems, manufacturing cells, and computer systems.

The rest of the paper is organized as follows. In Section 2, we describe the model
considered in this paper in detail, and the Laplace-Stieltjes transform(LST) of completion
time distribution is derived. The completion time, first defined by Gaver{4], is the period
that elapsed between the instant at which the service of n-th arriving customer begins
and at which service of the next(n+l)-th arriving customer may begins(does begin,
provided an arrival exists). This period is simply the n-th arrival customer’s service
time if there are no server breakdowns. In Section 3, a recursive calculation method for
the steady state system size is proposed using the method of regenerative process[7],
and then the probability generating function(p.g.f.) of the system size is derived.

2. Completion Time

In this section, we present the Laplace-Stieltjes transform(LST) of completion time
distribution. As mentioned previously, the completion time for n-th arriving customer is
the time interval elapsed from the customer start service until (n+1)-th arriving
customer may enter(does enter, if it has arrived) service. Before the analysis, we first
describe the queueing system considered in this paper in detail. The queueing system
has the following characteristics:
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(a) When the server is operational, the system behaves as an M*/E*/1 queue operating
under N control policy; that is, customers arrive according to a compound poisson
process with rate A, service process follows an Erlang distribution with mean 1/# and
shape parameter k. the server begins service only when the system size(the number of

customers begins in the system) builds up to or exceed a pre-assigned number, say N.
(b) When the server is breakdown, repair is started and service resumption takes place
as soon s the repair period ends with no loss of service involved(preemptive-resume
discipline).

(c) No breakdown occurs when the server is idle. If the server is operational, the
breakdown occurs according to a renewal process with the inter-breakdown time of
independent and identically but otherwise arbitrary distribution.

(d) The duration of a repair is arbitrary distributed with a finite mean.

For further analysis, some notations are introduced.

{A,} :=1 = sequence of inter-arrival time random variables
{S,} :=‘ = sequence of service time random variables
{F,}__,= sequence of inter-breakdown time random variables
{R,}_,= sequence of repair time random variables
{C.},_,= sequence of completion time random variables

oo

M(t) = equilibrium renewal process associated with {F,}

n=1

We define that, for any random variable B, B(x), and b" are the cumulative
distribution function(c.df) and n-th moment, respecitively. Also, let V(a) be the
Laplace-Stieltjes transform(LST) of a continuous random variable V, and G,(2) be
probability generating function of a discrete random variable D.

If we assume that the system reaches steady state, we can observe that,
from the view point of n-th arriving customer, equilibrium renewal process
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M(S,) represents the number of breakdowns experienced by n th arriving
customer whose service time equals to Sp. Thus, for preemptive-resume
discipline, the completion time for n-th arriving customer is the service time
plus sum of the repair times of the breakdowns occurred during this service
time. Therefore, the completion time for n-th arriving customer is given by

M(S,.

C, = S, t ,Z%R,

The tacit assumption that S, R. and F. are sequence of ii.d. random variables
implies that C, is also a seqguence of iid. random variables. In particular, Gy
approaches C for n>1 in steady state. Hence, the LST of C conditioning on
M(S) is

Hexp(— a Q) | S=x,M(S)=n] =exp(— ax)-Elexp(— ¢ Zb R)]
= exp(— ex):[R(a)]"

because of independence of R:. Unconditioning with respect to M( S), we get

Hexp(—a O | S=x«] = ’Z:Oexp(— ax)-[R(a)]"Pr{M(x)= n}
= exp(— a OGul R( )]

Since the service time is Erlang distributed with mean 1/# and shape

parameter k, Elexp(- @ O)] can be obtained by unconditioning on service time S
as follows.

Elexp(~ « O] = [ Elexp(— ax) | S=1dS(X)

k_k—1 _
- fone’(p(_ "x)GMu)EIE(_?)] £x (ke_xz{()! 1) gy
= j:GM(x)[ R( a)]—(%_xlT exp{—(u + a)x}dx (2.1)

To obtain closed form of (2.1), define another transform[2] by



TH#ELREE H19% $308H 1996F 98 209

$[R(a), ¢] = ]:E[exp(— @ C) | S=xlexp(— { x)dx
— [[exp{—(a + £)0Guol Ra)ldx

Differentiating (2.2) k-1 times with respect to §, we have

k_
&SR EL () [exp(— (o + £)nde Gueal R )l

Using (2.1) and (2.3), we get

Elexp(— a O) = [ Gul Ra)EE5r exp(— (s + a)mdak

_(=DFuk ) e[ R(e), £
(k—1)! l a¢ * D t=u

Furthermore, Guol R(2)] can be rewritten as

Guol R(@)] = [ R(a) PriM(x)=n)
= DRI {Fi») ~ Fyr (0}
=1+ 2[R ' [Ra) - 1IFs ()

where F n(t) denoted the n-th convolution of F(t).
By substituting (2.5) into (2.2), we get ¢ [R(a), £] as follows.

AR@,8 = [ exp—(a+Dad- (1+ [ R@]" [ R(a)~ 1IF* (2))ds

= ohe 4 A ZIR@ITR@-1] Fula+ D)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)



where Fn(§)=f0 exp(— &0)dF ¥ (%)
Now, we prove the following theorem.
Theorem 2.1] If service process is Erlang- k& distribution and inter-breakdown time is

arbitrary distributed with probability function F( - ), then the Laplace-Stieltjes transform
of the completion time distribution satisfies

a1 - FOUR@-1]
Hlexs(—aC =gy - [ pmr (e it Feo) e, 27

Proof) In an equilibrium renewal process[2],

F,,(§)=1—_%(Q[F(§)]"“

Therefore, from (2.6), we get

—_ 1 ]. < ”-— I_F n—
AR@, 8 = Ag+ s ZIR@I R - 11 =E (R

__1 [1- FOUR()—1]
a+ ¢ T TR~ R(a) F(D)] 2.8)

By substituting (2.8) into (2.4), we complete the proof.

Note that the moments of the completion time can be obtained by differentiating (2.7)
with respect to e at a=0.

Corollary 2.1] The first and second moments of the completion time are given by

BLCl— (=Dl g+ (_1_+ _; )] _

(—D! [aeF T\ g " Fe
o (=D 'p*[ 0% (2 27 7
ELC =" Dy a;’*“(r"‘ Y Fen-rol T 7e )] -

3. System Size Distribution
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In this section, we first derive the means of idle and busy period, and then obtain
the probability generating function of the system size distribution at arbitrary time point
by using the method of regenerative process and level crossing argument proposed by
Van Hoorn[18] and Tijms[17].

The batch size random variable denoted by X is assumed to be independent with a
common density function

ai = Pr{X=i} I=12,........
Let X1, Xy, X3, - - - - denote the successive batch size of customers and let
N = min { k : X1+Xz+ et +Xk = A }

then B~ is the number of batches that causes the system size to exceed the
pre-assigned number N.

Now, if we define B M)=Pr B y=1, i=1,2,..... , N, then it is easy to show that
l_jglq]‘ if 7 =1
pud={ 3.1)
~ quN—j" b lf 2 < l < N

By taking generating function of (3.1), we obtain the following lemma.
Lemma 3.1] Define a generating function

Bn(z) = gbb’zv( 0z’
then B,(z) is given recursively by
B =1~ 2102+ 2 2 0.8y-1(2) 3.2

Proof) Multiplying each equation of (3.1) by z" and summing over all 2, we have

Bi2) =(1- Hada+z3, 31 ay(i= e’
=(1—- gqi)z-F ZZ(I;'BN-,'(Z)
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Differentiating (3.2) with respect to 2z and taking the limit as Z—1, the expectation of
B[\, is

E[BN] =1+ l:g‘IiE[BN—i]

In what follows, the LST of idle period distribution is derived by applying the above
result.

Theorem 3.1] Let 1 be the idle period random variable. Then LST of the idle period
distribution is given by

Xa)= "3 a4 (3.3)

Proof)See Appendix A.l

By differentiation (3.3) with respect to @ and taking limit as a0, we have the mean
idle period after simple algebraic manipulation

E{]]

_ _E{8n]
- ,IN (3.4)

Next, we consider the mean of busy period. Lee and Srinivasan[5] showed that when N
control policy is employed, the mean busy period is

El n]EL S]

where @, denotes the number of customers existing in the system when service starts.

With the property that S, is stopping time and Wald’s lemmal12], E [8xy] is

represented as
E{ 65] = E[ BN EL X] (3.6)

Since service interaction discipline is preemptive-resume and breakdown process follows
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renewal process, the completion time is i.id random variable. Therefore, we can replace
service time with completion time in (3.5). Let BC be the cycle time, then from (3.4),
(3.5) and (3.6), it is clear that the mean busy cycle time is given by

ElBCl=E[N+ E(B]= A(]—fzg[%E[C])

We now show that the steady state distribution of the number of customers(system
size) in the system can be obtained from simple linear recursive equations. Our

derivation follows the arguments in Tijms[17]. Let( 7,7) be a state where

;= [ 0 if the server is idle
1 if the server is busy
7 = the number of customers in the system

and let

T;; = amount of time in state(i,j) during the busy cycle BC

U,‘: = exp ected amount of time during which i customers exist in a service time S,
given that j customers are present at the start of this service( Ui=0, ifi{})

P} = steady state probability that the system is in state(i, ;)

then, by the mean value theorem of regenerative process[12]

E( T,
P;= E[T{j‘] 3.7
First, we derive the expected amount of time in state (0,7),7 = 0,1,2.....

Lemma 3.2] Let Z(#) be a queue size process and T L0,7) = Pr{Z(#=(0, )}, then
BlTyl=4 2a%0)

%k
where g n( - ) denotes the n-th convolution of batch size distribution g( - ).

Proof) See Appendix A.2.

By Lemma 3.2 we have
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P BT, _ (1-0) nglq n(])
@ E[{BC] E{BA]

0 if j=N

if 0<j<N—-1 (3.8)

where p= AE[{ X]E{C]

Now, we consider the expected amount of time in state (1,7),7 = 0,1,2,....

Let E[{N,] be the number of service completion epochs at which customer served

leaves ; other customer behind in the system during a busy cycle ( 0, BCl, 7=, then
E[ T),] has a following recursive
relation[17]

HT,)= E60U L+ ZEANU j2N (3.9)

where ()= P,0n=1i, i=N
Note that if we use level crossing argument[17], we have
E[N;]=E[A)]

where E[A j] denotes the expected number of batches which see j order customers on

arrival.

Also, by the property that poisson arrivals see time averagel[20], it follows that

00

E[A]] = go'l n=;21-iq”E[ Toit+ Tl
=2 ZO{E[ Tol+E[T1} n=;2l—iqn (3.10)

Therefore, substituting (3.10) into (3.9), we get
_ 3 i AT s 1 S i
ELTy)= 3 6M0U L 42 5 SHETW+ BTl 3 aU' =1

By(3.7), the following linear recursive equation is derived.
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> 0,()U - L - .
=N " ] T
Py= E{ BC] ta :ZN go[POk_*_ Pyl n=1Zl—kanj 721 (3.11)

combining (3.8)and(3.11),the steady state probability can be obtained recursively as
follows.

Py =P00+P10=E1‘[——B;L]

Py, =P, ”Zlqn(j) 1</<N-—-1
Py =0 _ o 7=N
Py; = APy ,‘SNHN(’)U ; +4 121 go[POk_’_P”’] n=§l—kq”U; =1 (3.12)

Let us define the probability generating function of the steady state probability by

P(2)= iOP,»z 20[1’701';F Pyl

=
then, after some tedious algebraic calculation, we obtain the following theorem,

Theorem 3.2] The probability generating function of the system size is given by

6 -C (A1-—- C (A1-G -G
Po(l—z)(]I+ M2){1—C (A1 GX(IZ)_))éj(Z)((l x(2))) X(Z))

C (A(1-Gx()~2z

P(2)=
(3.13)

where [I= Agz Z:lq :.(i)z’

4. Concluding Remarks

In this research, we have established the probability generating function of a single
server queue operating under N control policy where the server is subject to breakdown
whose process follows a renewal process. Compared to the previous research, two main
contributions are distinguished. First, we treated general repair and inter—breakdown
time distributions and derived the exact closed from of the probability generating
function of system size. Also, the steady state probability can be obtained
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computationally using recursive formula if the service time is deterministic or
generalized Erlang distribution[17]. the mean and variance of the system size distribution
were not derived in this paper, but these measures can be obtained from (3.13) by
regular derivation routine.
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Appendix

A.l1 Proof of theorem 3.1
By conditioning on B, we obtain the probability that the idle period ends in time
interval (¢, t+4¢f) as follows.

Pr{t<I<t+ 48 = ﬁ:‘,l Pr{t<I<t+ A4t By= i} B\ 1)
- ﬁl Pr{ t< Zlejgﬁ At}BN(z')

1=

= 3 YdDatBy()

where Y/(#) is Erlang distribution with shape parameter i and mean 1/A. As 41 -0,

we have

(D) = gl Yil Ddtga )

Since inter-arrival time is exponential distribution Yi(t) is Erlang-i distribution, the
LST of the idle period distribution is

Xa) = ["exp(~atai(n= [ exp(—at ﬁl Yil DatBa )

= glﬁzv(,')fomexp(—at)Yi(t)dtz ﬁ::]/?zv(i){ Aia}l




A.2 Proof of lemma 3.2

Proof)Let I, be an indicator function defined by

[ = [1 if the number if customers arve j and the server is idle at time 1
710 otherwise

then it is easy to check that
BT, =B | Idd= [ El1)a

Since E[I,]= Pr{l,=1}=7(0,), we have
BT = [ r0pd= [T 3 aip-SRCA00”
-2 fomexr)( — ) dt

n=1 n!

= % "Z:la* n(4)



