TEELRTE $19% FE398 199%6F 9A 193

A Deadlock Avoidance Method for Concurrent
Part Flows in Flexible Manufacturing Cell

Chang-Ouk Kim ~
Kyung-Sik Kang ™

Abstract

B A= FMC(Flexible Manufacturing Cell)ol]l Qo] 43 7H4o] gy HE9 58
S A7) ¢ wabA AW (Deadlock Avoidance Method)ol gk AJeto A o] uy
o] #23% A4 AA, FMCY 374 & A 1842 5 n B4, AN L Ed g
dispatching ®.&°] a5 MAHA Jrie Rolth. waAAHYY L
AElo] el ole T@AAYYE(A Cycle Detection Algorithm)# 98 FEA Yo 2
A, 5old utg Atgre F@WALnYES A4y 9EFEAYYo] 2RI F U7
ol wHAZ e doA YR FEAYL WS Fasitis Aol ol g 9ste] wH
9] N-step w2& AAss, LA 5 A L ZAAY Y} N-stepe] AHAFEH NS
A A 8F 4 ok

I . Introduction

A typical flexible manufacturing cell (FMC) consists of several machining centers,
local buffers, and a material handling system. For increasing the performance and
offsetting the high cost of capital investment, most FMCs are designed to
simultaneously process several part types by assigning them to different machining
centers according to their processing sequences. As a result, the complex moving
patterns of parts cause interferences between parts for exclusive usage of resource.

* School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, U.S.A.,
Tel: 317-746-2308, Fax: 317-494-1299, E-mail: kimco@gilbreth.ecn.purdue.esd

#* Department of Industrial Engieering, Myong Ji university, san 38-2, Nam-Dong,
Yong in, Kyunggi-do, 449-728, KOREA.

194 24

o

1S - 2

Therefore, development of a real-time control method which controls concurrent part
flow without interference and yet achieves high utilization level of resouitce has been
emerged as an important research issue.

The deadlock is one of the undesirable characteristics of FMC overlooked for many
years in the research field of the automatic control of manufacturing system. This
situation is occurred frequently during the operational stage of FMC because there are
finite number of resources, and they may be requested by several concurrently moving
parts in circular fashion. Furthermore, the possibility of deadlock increases with the
density of parts in the system. Formally, deadlock in FMC is a situation in which two
or more parts are in simultaneous wait state, each one waiting for one of others to
release a resource before it can proceed.

A wrong idea to prevent deadlock is to operate a given FMC such that only one
part type is allowed to be processed at a time (batch processing). This wrong idea
arises from the viewpoint of machine-oriented deadlock. Most people consider only the
machining sequences of various part types as the major factor of deadlock. Since only
one part flow exists, deadlock may be looked avoidable. However, even if one cell
consisting of a machine, a buffer, and a robot processes one part type, deadlock occurs
frequently. For example, consider that part type 1 has the following processing sequence
in the cell : the robot moves a new part from the buffer to the machine, the machine
processes the part, and the robot moves the part from the machine to the buffer after
finishing machining. Suppose a situation that one part is being processed by the
machine and another part is being held by the robot waiting for the machine. Then
further movement could not happen because the part on the machine cannot hold the
robot which is already captured by the other part (circular wait). This example indicates
that the development of deadlock resolution method must consider not only the
machining sequences of part types but also the contention of other resources, such as
material handling system, buffers, tools, pallets, and so on.

The objective of this research is to develop a deadlock avoidance algorithm which
can resolve possible deadlocks in advance before the system enters the deadiock states,
while preserving a high level of resource utilization. In Section 2, we discuss the
deadlock problem of FMC in detail and related prior and current research works in this
area. In Section 3, a resource-allocation graph which is used to represent part-resource
relationship in a FMC is introduced. Section 4 provides the deadlock avoidance method
which consists of a graph theoretic deadlock detection algorithm and a resource request
policy. Finally, Section 5 concludes this paper and indicates possible areas of future
research work.

TALEREE H19% B30 19%6%F 9A 195

II. Literature Survey

Computer Science community, deadlock has been continuously observed during the
implementation stage of process control software. It becomes a critical obstacle to
efficiently operate the software in terms of resource utilization. Thus, the research
related to deadlock was initially started by the Computer Science researchers to resolve
infinite waiting state of jobs in operating systems (Peterson and Silberschatz, 1985) and
of transaction in database system (Bell and Grimson, 1992). As a result, the following
necessary conditions were derived for deadlock to occur :

Mutual Exclusion - Parts hold resources exclusively, making them unusable to other

parts

Nonpreemption - Resources are not snatched from one of the parts that are

requesting them until they are released by a part holding them.

Blocking - Parts which request unavailable resources must wait until the resources

are released.

Circular Waiting - Parts request resource held by other parts and at the same time

hold resources requested by these same parts.

In particular, as commonly observed in the part flows in FMC, if each resource is
assumed to have single capacity unit which implies a resource may be assigned to at
most one distinguishable part, then the above four conditions become sufficient and
necessary condition for deadlock (Peterson and Silberschatz 1985). At the design or
operational stage of FMC, deadlock can be precluded by configuring FMC or devising a
controller such a way that at least one of the four conditions is eliminated. But, due to
technological limitation and material cost, most FMCs do no allow resource sharing and
preemption of part. Therefore, resolution of either the blocking or the circular waiting is
the only economic way not to fall into deadlock state. According to the point in time of
deadlock resolution at the operational stage of FMC, deadlock resolution method can he
classified into the following three methods.

2.1. Deadlock prevention method

The deadlock prevention method keeps the system from deadlock by disallowing
entry into a unsafe state from which future deadlock is inevitable. Most deadlock
prevention methods have been developed by relying on Petri net. Viswanadham et al.
(1990) applied the reachability graph of Petri net to construct the deadlock prevention
policy of a given FMC. However, the exhaustive state enumeration of the reachability
graph of a medium or huge size FMC leads to excessive computing time for the
enumeration. Thus, their method seems to be impractical to be applied to real FMCs.
For the real-time control of automated guided vehicle (AGV), Kim and Tanchoco (1991)

196 AL - AN

devised a deadlock prevention algorithm by introducing a time-window mechanism.

2.2. Deadlock detection/recovery method

In some sence, the deadlock prevention method is a static policy because it does not
take account of dynamic information of system status to circumvent deadlock, resulting
in a poor resource utilization. To obtain much higher performance level, the deadiock
detection and recovery is a preferred alternative in some cases, such as databases and
operating systems (Peterson and Silberschatz 1985, Bell and Grimson 1992) where it is
not critical and expensive to abort one of circular-waiting jobs and restart it. Wysk et
al. (1991) applied a symbol matrix and a string manipulation algorithm to detect a

deadlock and recover it with special buffers which are reserved for breaking deadlock.

2.3. Deadlock avoidance method

The deadlock avoidance method is somewhat in the midst of the deadlock
prevention method and the deadlock detection/recovery method in terms of deadlock
resolution time. Like the deadlock detection/recovery method, it monitors and uses
dynamic information of system status to avoid deadlock. But the deadlock avoidance
method uses the system information to find out a way which leads the system not to
enter deadlock state, while the deadlock detection/recovery method uses it to detect
deadlock state. Meanwhile, it can be said that the deadlock avoidance methods is similar
to the deadlock prevention method in the sense that both methods do not allow the
system to be led to deadlock state. However, from the viewpoint of resource utilization,
the deadlock avoidance method is better due to its control flexibility. Thus, among the
three methods, the deadlock avoidance method is the most suitable method to be applied
in FMC.,

Petri net is a popular for deadlock avoidance in FMC. Viswanadham, et al. (1990)
used the reachability graph of Petri net and a n-step lookahead approach for deadlock
free resource allocation. However, they mentioned that infinite look-ahead is inevitable to
avoid all possible deadlocks. Thus, their method can be only applied to small size
systems. Banaszak and Krogh (1990) introduced the notion of restriction policy, one of
the resource request policies by which some enabled transitions that may lead to
deadlock condition are excluded during operational stage. The core of Hsieh and Chang’s
work (1994) is to use liveness condition. They developed a test procedure which can
determine whether the system is live after an action is executed. Although the Petri net
modules are successful to avoid deadlock in FMC, they needs professional skill to be
constructed, and cannot be modified easily when the configurations of FMCs or the
processing sequences of part types change dynamically.

THELBEE H19% 308 19965 98 197

M. Resource Allocation Graph

The resource-allocation graph has been recognized a powerful model which
describes deadlock precisely for many years in the area of multitasking operating
systems (Peterson and Silberschatz 1985). This graph is a time-varying directed
bipartite graph G(t)=(V, E) consisting of a set V(t)={1, 2, ..., V($ |} of nodes and a set
E()SV(t) X V(1) of edges at time t. A pair (u, v)eE(t) is called an edge from u to v
at time t. V(t) is partitioned into two subsets P(t)={ p;, ps, ..., P,}, the set of parts
being processed on the system at time t, and R(t)={ 7|, 74, ..., 7, } the set of resources
available at time. Pictorially, each part p;,i=1,2,...,n is represented as a circle and
each resource 7;,j=1,2,...,m as a square. A path from u to v where u,veV is a
sequence of nodes, vg,v;,...,v; such that vy=u, vp=1v and (v;,v;+)€E for
0<:<k where k is the length of the path. A cycle is a path from u to v and a graph

is acyclic if it contains no cycles. Indegree of a node v which is denode by indeg;w(v)
=|{u,{u, v) = E}|, is the number of edges ending at v, and outdegree a node v, outdeg
outdeg cp(v) =[{ufv, u) €E}|, is the number of edges starting at v.

There are two types of edges in the resource-allocation graph : request edge and

allocation edge. The request edge, (p;, 7;) is a directed edge from part p, to resource
7, It represents that part p, requested resource 7, and is currently waiting for that
resource. The allocation edge, (7;,p;) is a directed edge from resource 7, to part p,
signifying that resource 7, has been allocated part p.. Note that

outdegx»(r;)=1,7=1,2,...,m. This implies that each resource must be held in a

nonsharable mode. Also, no edge exists between parts or between resource. Figure 1-a
shows an example of the resource-allocation graph.

In a given FMC, the dynamic change of part-resource relationship as the results of
requests, allocations, and releases of resources are reflected in the resource—allocation
graph by the insertions of request edges, the changes of the request edges to allocation
edges, and the deletions of the allocation edges. Under the assumption that each
resource has one capacity unit, deadlock can be predicted by checking whether an
insertion of edge makes the resource-allocation graph cyclic. Therefore, resource
allocation problem with deadlock avoidance can be considered as the problem of
changing the resource-allocation graph while keeping it acyclic. Hereafter, it is assumed
that each part is allowed to capture a resource only after currently holding resource is
released. This is a common way of resource management. But each part is granted to
request a resource anytime. Then, deadlock of FMC can be classified into two types :

198 LS - UPA

=~

o

request-oriented deadlock and allocation-oriented deadlock.

The request-oriented deadlock is the one that a request-edge makes deadlock. Figure
1-b show an example of the request-oriented deadlock where insertion of request edge
(1, A) forms a cycle (1, A, 2, B, 3, C, 1). The allocation-oriented deadlock is caused by
an allocation of a resource to a part. Figure 1-c show an allocation-oriented deadlock
which occurs when request edge (1, A) change to allocation edge (A, 1), thereby
creating a cycle (A, 1, B, 2, A). Therefore, request and allocation of a resource must be
controlled carefully such that the system is deadlock free.

pans resources par‘ts resources par‘tS resources

O A
L

ri

r2

r3

(a) (b) (c)

Figure 1. (a) acyclic resource-allocation graph, (b) request-oriented deadlock, and (c)
allocation-oriented deadlock

IV. Deadlock A voidance Method

4.1 Cycle detection algorithm

In this section, we investigate a cycle detection algorithm originally developed by
Belik (1990). The cycle detection algorithm is based on a path matrix. The path matrix
isa | V| x| V]| matrix P, with

(i) ={ k if there are k=1 different paths from node i to node j
7 0 if there is no path from node i to node j

where 1<, j<| V|

Figure 2-h shows the path matrix of a resource-allocation graph depicted in Figure
2-a. We define the column vector of P as P(_, j), the ith row vector as P(i, _), and
the cross product between the column vector and the row vector as P{_, NP,),

which is again | V| x| V| matrix. Also, let 1(j) denote identity a column vector of size

THEEB S F19% 308 1996F 98 199

| V| where each element has zero value except at element j, and I 7T denote the

transpose of (7).

2 p3srirar;

—_ - OO DY

0
0
0
0
0
0

o O o O O
OO = OO
OO = OO

(b)

Figure 2. (a) a resource-allocation graph and (b) corresponding path matrix

In Figure 2-a, consider the insertion of an edge (ps, ri). Then the number of paths
passing through the edge (p3, ri) is formed as follows : the number of paths reaching
node p; and the number of paths starting from node r; correspond to column vector
P(_, p3) and row vector P(r;, _), respectively. Therefore, the number of paths which
passes through edge (ps, r1) can be produced by the cross product of P(_, p3) and P(r,,
_J). What we do not consider is the number of paths starting from ps or ending at r. It
is derived by adding I(ps) to P(_, ps) and I(r;))" to P(ri, _). Thus, of we denote A(ps,
r;) as a matrix whose elements represent the number of paths either passing through
edge (u, v) and the number of paths starting from u or ending at v, then A(ps ri) is
given by

A(pyr) = (P(—, py)+ L(py)) K (P(ry,)+)7 (1)

By adding 4(p; ;) to path matrix F which is the one before inserting edge (p3, 7;)

in Figure 2-b, the number of paths being dynamically changed during the operational

stage of FMC can be recorded. For example, as given in Figure 2-a, if edge (p;3,7,) is

inserted, 4(p3 ;) is calculated by

0, (0
ol o
A py, 7)) = 8+ 8 RI[120011D+000100)]
ol |o
o 1o

Pi. D2 D3 M 7y 13
niot 0 0 0 0 0

p10 0 0 0 0 O
- hnl1l 2 0 1 1 1
rn|0 0 0 0 0 O
10 0 0 0 0 O
10 1 0 0 0 O

Therefore, the new path matrix is given by

P = P+ A(py 7)) 2)

Dy Dy b3 M 1y 73

20 2 0 0 1 1
10 0 0 0 0 O
—p1 2 0 1 1 1
ni{l 2 0 0 1 1
101 0 0 0 O
10 2 0 0 0 O

The problem that remains to be considered is to check whether insertion of an
edge (p3 7;) makes the graph cyclic, which is equivalent to a deadlock state in FMC.

When attempting to insert an edge (p3 7)) into the graph, it is enough to check
whether path matrix element P(p37)>0, which means that there exists at least one
path from node p3 to node 7,. Thus, the insertion of edge (w,v) will make the graph
cyclic. In the previous example, the FMC is safe from deadlock because
P"™*(ry p3) =0.

For an edge deletion, the same procedures are followed except the equation 2
where instead of the addition operation, 4(7, p3) is subtracted from P’ la

The cycle detection algorithm is adaptable to the change of FMC configuration
(installation or removal of resources) by adding or deleting new resource nodes in the
resource allocation graph. The cycle detection algorithm also dose not use a prior
knowledge of routing sequences of parts for resolving deadlock. This feature implies
that the routing sequences cant be flexibly changed according to the state of FMC,
which allows the dispatching controller to use a flexible routing control. Whereas,
Petri-net based deadlock detection methods.must reflect the routing sequences of parts
on the Petri-net models to detect deadlock before FMC beings to operate

4.2. N—step(N>=1) lookahead resource request policy

T£EEBFE H19% $398 19%6F 9A 201

The resource request policy refers to a strategy that decides the point in time of
requesting resources. It is of importance for the deadlock avoidance in FMC because (1)
it affects the resource utilization and (2) FMC can even be led into deadlock although
the deadlock detection algorithm is employed under an impertinent resource request
policy. For example, consider O-step lookahead (immediate) resource request policy under
which every part requests the next resource just before it releases the currently holding
resource. This policy will guarantee the highest resource utilization compared to other
possible policies. Despite this advantage, however, the O-step lookahead resource request
policy may induce the request -oriented deadlock unless alternate routing sequence is

provided. For instance, as shown the resource-allocation graph in Figure 3. if part p;
requests resource #; after being processed in resource 7y, the cycle detection algorithm
disallows part p; to make request edge (p;,7;) because the edge makes a cycle
(p1.71.02. 73,03, 72 p1). Therefore, part p; should wait until the parts p; and p; release
resource #y; and 73 . But parts p; and p; also wait for part p, to release resource

7. Consequently, albeit, there is no cycle, any part cannot move.

parts resources

r2

Figure 3. A request-oriented deadlock.

To avoid such a request-oriented deadlock, we propose a N—step(N=1)
lookahead resource request policy. This policy always enforces every part to request the
next resource and future N resources before releasing the currently holding resource.
The range of N for part p; is 1<N<M, where M, is the number of required

resources during the whole processing period of part p;. Figure 4 shows the possible

members of the N— step lookahead resource request policy. The main distinction among
the member policies is characterized by the resource utilization. As the lookahead step
increases, the more the resource utilization decreases. Among the member policies, the
1-step lookahead resource request policy preserves the highest resource utilization.

P resource utilization decreases

] i 1
O-step 1-step N-step
lookahead lookahead =5 =822 a0 lookahead

Figure 4. N-step(N = 1)lookahead resource request policy.

43 Deadlock avoidance method

The deadlock avoidance method is composed of two modules: the 1-step
lookahead resource request policy and the cycle detection algorithem. Compared
to other deadlock avoidance methods, this method is capable of interacting with
a part dispatching controller. The following procedure illustrates the deadlock
avoidance method.

Deadlock Avoidance Method(p;, next, signal) {
/* 1-step lookahead resource request policy */
if(next == 1)then
insert request edges p,— r"m, and p, and p,— rim,+1 in the

resource -allocation graph
else

delete assignment edge 7,— p, in the resource-allocation graph

insert request edges p,— ri,mH in the resource-allocation graph
end if
/* the cycle detection method */
calculate new path matrix using equation (1) and (2)

if(#'pey is idle and P(7, p,))then
change 9,— ¥y 0 7y — D,
signal=yes

else
signal=no

end if

return(signal)
}

T#FEBEE H19% 308 1996F 9A 203

In the above procedure, the variables next and r,-’ are symbols to represent
the next processing stage of part p, and the resource require at the jth

processing stage of part p, respectively. Also, the signal is a variable to

indicate whether deadlock occurs or not. Figure 5 depicts an integration model
of the deadlock avoidance controller and a dispatching controller. The integration
model follows a client-server mechanism(Berson, 1992) where the dispatching
controller acts as a client and the deadlock avoidance controller as a server.
Whenever the processing of a part is finished, the dispatching controller refers
to the deadlock avoidance controller for the deadlock possibility which may be
caused by the request of the next resource.

dispatching controller

pi, next signal

deadlock avoidance
controller

Figure 5. Integration of the deadlock avoidance controller and a dispatching
controller.

V. Conclusion

Throughout this research, a deadlock avoidance method for FMC is
proposed. Compared to other methods, the deadlock avoidance method is simple
and can be easily implemented. Additionally, it is scalable in the sense that
when a new resource is introduced such as the purchasing of a new matching
center, the deadlock avoidance method can be still used without modification
except the insertion of a node representing the resource in the
resource -allocation graph and the path matrix. For future research, it is
considerable to develop a full set of shop—floor controller which includes a
scheduler, a dispatcher, a monitor, and a deadlock avoidance controller.

204 UHS - THA

References

BANASZAK, AZ., AND KROGH, B. H, Deadlock avoidance in flexible
manufacturing systems with concurrently competing process flows. [EEFE
transactions on robotics and automation, 6, 724-734.

BAUER, A., BOWDEN, R., BROWNE, J.DUGGAN, J., AND LYONS., G., 1991,
shop floor control systems: from design to implementation(Chapman and
Halb).

BELIK, F. 1990, An efficient deadlock avoidance technique.lEEE transactions on
computer, 39, 832-888.

BELL DAVID, and ,GRIMSON J. 1992, Distributed database systems
(Addison-Wesley).

BERSON, A., 1992, Client/Server Architecture(McGraw-Hill).

COFFMAN, E. G, ELPHICK, M.]J, AND SHOSHANI, A. 1971, System
deadlocks, ACM Computing surveys,3, 67-78.

HOLT, R. C.,1971, Comments on prevention of system deadlocks, Communication
of the ACM, 14, 36-38.

HSIEH, F. S,,AND CHANG, S. C,, 1994, Dispatching-driven deadlock avoidance
controller synthesis for flexible manufacturing system. IEEE transactions on
robotics and automation, 10, 196-209

KIM, C. W.,,AND TANCHOCO, J. M. A, 1991, Conflict-free shortest-time
bidirectional ~AGV routing. International Journal of Production
Research,29,2377-2391.

KUNDU, S., AND AKYILDIZ, LF. 1989,Deadiock free buffer allocation in closed
queueing networks.Queueing Systems, 4,47-56.

PETERSON, JL., AND SILBERSCHATZ, A., 1985 Operating System
Concepts.(Reading, MA:Addison- Wesley).

SURI, R., AND STECKE, K. E.(editors), 1989, Proceedings of the third
ORSA/TIMS conference on flexible manufacturing systems: operations
research model and applications,(FMCterdam; New York: Elisevier).

VISW ANADHAM, N.,, AND NATAHARI, Y., 1992, Performance Modeling of
Automated Manufacturing Systems(Englewood Cliffs, NJ:Prentice-Hall).

VISWANADHAM, N., NARAHARI, Y., AND JOHNSON, T. L.,1990, Deadlock
prevention and deadlock avoidance in flexible manufacturing systems using
petri net models. IEEFE transactions on robotics and automation, 6, 713-723.

WYSK, R. A, YANG, B. N,, AND JOSHI, S., 1991, A detection of deadlocks in
flexible manufacturing cells. IEEE transactions on robotics and automation,
7,853-859

WYSK, R. A, YANG, N. S., AND JOSHI, S, 1994 Resolution of deadlocks in

flexible manufacturing systems: avoidence and recovery approaches. Journal
of Manufacturing Systems, 13, 128-138.

