Estimation of Manoeuvring Coefficients of a Submerged Body using Parameter Identification Techniques

  • Published : 1996.11.01

Abstract

This paper describes parameter identification techniques formulated for the estimation of maneuvering coefficients of a submerged body. The first part of this paper is concerned with the identifiability of the system parameters. The relationship between a stochastic linear time-invariant system and the equivalent dynamic system is investigated. The second is concerned with the development of the numerically stable identification technique. Two identification techniques are tested; one is the ma7mum likelihood (ML) methods using the Holder & Mead simplex search method and using the modified Newton-Raphson method, and the other is the modified extended Kalman filter (MEKF) method with a square-root algorithm, which can improve the numerical accuracy of the extended Kalman filter. As a results, it is said that the equations of motion for a submerged body have higher probability to generate simultaneous drift phenomenon compared to general state equations and only the ML method using the Holder & Mead simplex search method and the MEKF method with a square-root algorithm gives acceptable results.

Keywords