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Abstract

A stability analysis in the geomagnetotail is presented within MHD limit
with a modified form from ideal Ohm’s law. Using the high kv
approximation (ballooning limit), we derive the basic eigenmode equations
which can be reduced to the ideal MHD limit. The incompressible limit
is numerically solved for a number of model equilibria of tail by Kan
[1973] . and we have found no unstable Kan equilibrium. Also. an
analytic theory is carried out for the case where BX, is assumed to be
constant along the field line, following the idea by Lee and Min ([1996] .
In that case. it is suggested that the tail stability to the incompressible
antisymmetric mode is determined by the ideal MHD.

1. Introduction

Magnetospheric substorms are often considered as the result of some large scale plasma
instabilities in the magnetotail. While there have been proposed a number of different
diverging scenarios of substorm mechanisms, the problem of tail dynamics, in particular. its
stability in association with substorm onset. still remains confusing and unresolved in the
community. While the tearing mode has long been most popular as much as controversial,
other instabilities like ballooning mode [e.g.. Roux et al.. 1991] have been also proposed.



12 KOREAN JOURNAL OF GEOPHYSICAL RESEARCH VOL. 24, NO. 1

There exist several studies on linear stability theories in the geomagnetosphere within
MHD approximations in the very high k, limit, which is often referred to as ballooning limit
in fusion devices. In this limit, it has been recognized by Lee and Wolf {1992] that the
plasma compression is the key reason to stabilize the compressible interchange/balloon mode
of ideal MHD in the tail geometry. Also, Lee and Min [1996] argued that the tail-like
geometry needs to have a sufficient field-aligned portion of a substantial curvature in order
to become unstable to the incompressible antisymmetric mode of ideal MHD. In both
results, the plasma compressibility in combination with the “hard” or “closed” ionospheric
foot boundary condition is the essential reason to make the balloon/interchange type mode
become stable in the typical tail geometry.

In this work, we wish to study the effect of non-ideality in, otherwise. ideal Ohm’'s law on
the plasma compression for the high k, limit stability analysis. We first derive the basic,
coupled eigenmode equations (section 2), and perform an extensive numerical calculation for
a number of model equilibria for the incompressible mode (section 3). Also. an analytic
theory is developed for a model where BX. is assumed to be constant along the field line,
following the idea by Lee and Min [1996] .

2. Derivation of Basic Eigenmode Equations
2.1 Equilibrium

We will consider the two-dimensional equilibrium in which nothing depends on the
coordinate y and where the magnetic field has no y-component in the usual geomagnetic (x,
y. z) coordinate system. Also, we introduce a new orthogonal coordinate system for the
convenience of the stability analysis. namely, (A.y.x): A represents the flux coordinate
across the magnetic flux surface in the normal direction, and » is the field-aligned
coordinate in which the field-aligned length element ds is given by h.dx. h: being the
corresponding metric factor.

2.2 A Modified Form of Ohm’s Law

The derivation is based on the typical set of MHD equations, namely, the low frequency
form of Maxwell equations plus the equations that govern the plasma motion in ideal MHD,
except one modification. Specifically. we use the following form of Ohm’s law.

E+vxB = (JXB-7p.)/ne (1)

where p. represents the electron pressure and the other notations refer to the usual physical
quantities. This form of Ohm’s law can be derived from a viewpoint of single particle
motion within the guiding center approximation [Wolf, personal communication, 1989] . In
fact, the right hand side of (1) is directly related to the usual drift velocities of the particle
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such that neglecting them in comparison with the EXB plasma motion simply recovers the
perfect conductivity approximation in ideal MHD. i.e.. E+vXB=0.

In the derivation of basic eigenmode equation of stability here, we maintain the nonzero
contribution of the right hand side of (1). We wish to study whether such a modification in
Ohm’s law can help in reducing or even removing the plasma compression effect in
determining high k&, stability.

2.3 Linearization within the high &, approximation

In this linear theory. the displacement vector has the variation of exp(ik,y). One of the
major approximation in the procedure of the derivation is to take the limit k.= k, — o,
which corresponds to assuming that the wavelength in the y direction is very short
compared to the scale length in the xz plane. This limit is normally referred to as “high-n
ballooning” in fusion devices [Freidberg. 1987] . Using this limit. the Ohm’s law, (1). can
be linearized as follows.

8E + dvxB = -{iple-w;.)/neldv + A(T8p-8p/Ypip)/ne - vX3B (2)

where & refer to the perturbed quantities, @.=dJi.k,/en. Ji. the perpendicular ion current
density. p the mass density, and v the ratio of specific heats. Also. it was assumed that 3p;
= ASp for simplicity where A is an arbitrary constant and that the equilibrium electric field
E = 0. Our derivation partly follows the work by Miura et al. [1989] . in which the simple
perfect conductivity approximation was used. however.

In preparation for the calculation of the magnetic induction equation in which the curl of
the electric field has to be computed, we carry out the following calculations setting the
right hand side of (2) to N.

(TXN)a = -liplo-o; )/nel(ik,dv. -adv,/as) + Jwi 8Ba (3)

(IXN)y = -lip(e-a; Y/ nel(B/h)ta(va/BY/o%) - v,(B/h){8(8B./B)/ax)
+ {ip(e-w; }/neldv. (B/h){ah/aA) + Balip(a-u; )dv /ne)/sA
-(B/h){3hv,8Ba/0 A) (4)

(7XN); = Ba{-ipo-w; )dw,/ne)/aA + lip(w-e; )/nelikdvy + o 3B (5)

where v, = 0./k, and lrefer to the component parallel to the magnetic field.

Our first derivation concerns the relation between 8B, and 8p in an attempt to see
whether the diamagnetic relation B3Bi+Wdp = 0 [Miura et al.. 1987]) still holds in the
present formulation. First. from Ampere’s law. one obtains
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b-I%X3dJ, =
(B/wo)(3/aA)(Ba/as(®Bs/B)-(B/h,)a/o A(hAB)} + k, BB/ (6)

Then, linearizing the momentum equation gives

byx3J, = -{ipla-—u;)/B) (Svi-k, + V-8v.) -dv.T{ip(e-u;.)/B} -
b-73B, XJd/B + (3By/B)b+1BXxJ - (8B,/B)b-71xJ +
(ho/B)7.8p-p + (1/B)7.%p (7

where k. = b*¥b = (B/B):7(B/B). In the derivation, an additional simplifying assumption
was made, ©;./0 « O(¢"). Also, equation (5) was used for the computation of 88:. Equating
(6) and (7) verifies that the same diamagnetic relation can still be used in the present
formulation. This relation is used in the future calculations.

Now we will derive an equation for 3va. We start from the momentum equation to obtain

J+d8J.L = [kyp((ﬂ—lﬂu)/Bz}BSVA —I‘kyJ(BSBII - UOBP)/BZ + 2(iky/B)6paB/aA (8)

Then, linearizing Ampere’s law gives

7-8Jy = -(iky/uo)(B/h,){a3B,/Bax) (9)

Now. using (8) and (9) for the condition 7-3J=0, one finally obtains the basic eigenmode
equation for X where X=PBdv,.

vaZB(d/ds) ((1/B)(dX/ds)} + efX =
-(2BK./0) (Xdp/dA + Yp1+8v) + vallk,ep/ne)l by +
(kyo+/ne) (Yypt+dv + 2(B*/u) (k/B)X - (kya-p/Mone) X} (10)

where va is the Alfven velocity, and @-=w0-0;.. Equation (10) reduces to the Alfven-ballooning
mode equation of ideal MHD in the limit that ©.=0 by setting the k,~dependent terms to
zero. The effect of the non-ideal Ohm’s law is maintained through wi. in several terms of
(10). Also, the plasma compressibility 7-8v which is related to the equation of 3p appears to
be coupled to 8va equation (10). Therefore, equation (10) basically describes a "modified
Alfven ballooning mode” being coupled to the plasma compressibility effect.

The equation to govern the plasma compressibility which is in turn coupled to (10) can be
derived in a similar fashion. By linearizing the adiabatic compression equation of state. one
finds
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-i(@-w,1)8p = -Bdvadp/dA - YpT-bv (1
Now. 7+0v can be explicitly calculated as follows. First, combining Ohm’s law with

Faraday's law gives 7-3v. = 7-(BEXB/B%) + 7-(BXN/B%. After some algebra. one arrives at
the following expression.

7-8v. = j(0-0;)8B:/B + (/B)8v.-Tp -28v. K, - ik,Svaip(a-0;.)/neB (12)
Next. from the paralle]l component of the momentum equation. one finds

{(e~0;.)ne + kydp/dA}V+dv, =
-i(neB/)a/as(1/Badp/as) + (neB/M)(1/(v-w;1))dp/dA 8/as(1/BaBbva/as) (13)

Consequently, substituting (12) and (13) into (11), one obtains the equation for 8p as
follows.

vilB(d/ds){(1/B)(dbp/ds)} + 0.0« +(k,/ne)dp/dA} (1+v/valbp =
-i(vs¥dp/dA) (B/e.\(d/ds){(1/B) (dX/ds)}
-ito. + (k,/ne)dp/dA}(1+v¥/va')dp/dA ~(2kp/B)vid + v/ val(k.p/mone)} X  (14)

where v = 1p/p.

Equation (14) is. of course, coupled to (10) in complicated manner, so the two equations
should be solved simultaneously and in most cases numerically for given equilibrium. Also.
it is interesting that the wavenumber &k, appears explicitely in both equations as an
independent parameter unlike the case of ideal MHD in the limit k.= k, —» ©, where %k,
trivially goes away in the final equation.

3. Incompressible Limit and Applications
3.1 Incompressible limit

Rather than attempting to solve the full, coupled eigenmode equations (10) and (14), we
limit our interest to an incompressible case for which (10) is only relevant. Specifically. we
set 7+3v to zero in (10), which results in the following.

2 2 2
va’B(d/ds) {((1/B)(dX/ds)} + 0.2 (1+k,D/men’eHX

-0+ (2Bkk./Mone) X+ (2Bk./p) (dp/dA)X = 0 (15)

The first term is associated with the field line bending of the Alfven ballooning mode while



16 KOREAN JOURNAL OF GEOPHYSICAL RESEARCH VOL. 24, NO. 1

the last term represents the free energy source for deriving the instability. Only the second
and third terms appear to be modified and added by the non-ideal Ohm’s law (1).

In general, it should not be taken for granted that the incompressible assumption always
gives the most unstable chance. Instead, it should set some limitation to the flow velocity
as discussed by Lee and Wolf [1992] . In ideal MHD. it gives the most unstable situation
when V+3v is constant along the field line. Although it is not clear if the same condition can
give the most unstable situation even in the present formulation, we will limit our interest
to such a case for simplicity below.

Now we proceed to compute some useful expression for 7-3v. From Faraday's law
together with Ohm’s law, one can first obtain the expression for 8B, which. in combination
with the adiabatic compression relation. then gives

-jo. (BSBy +updp) = -BH(28v. -k, + T+8v.) - WoYpl-By - . (Bp/ne)(ik,dvy) (16)

Then, using the diamagnetic relation, one obtains the expression for 88, below.

7-8v = -(B*/ue1p) (28v. k. + 78v.)-(B/WYp)iv. (p/ne)(ik,5va) 17

If 7-3v is assumed to be constant along the magnetic field, then. after integrating (10) along
the field line, one arrives at

V-8v = ~/ds/B (2k/B - (8.p/ne)(k,/B4X / {fds/B + wp fds/B? (18)

Therefore. one notice from (18) that any X that is antisymmetric about the equatorial plane
is incompressible. We consider such a mode in the following section.

3.2 Numerical calculation

Equation (15) can be solved numerically for a given equilibrium and for various values of
k,. We employ a shooting method in combination with the Secant method [(Burden and
Faires. 1989] to find the eigenvalues and eigenfunctions in an automatic way.

We adopt a specific equilibrium of Kan (1973] which is a self-consistent analytic
solution of Grad-Shafranov equation. The model has two physical parameters as boundary
conditions, the plasma number density N(0.0) and the equatorial magnetic field B,.(0.0) at
the reference point x =z =0. The two parameters as well as the &k, values have been varied
over a range of major interest. For all cases tested. we find no instability of antisymmetric
ballooning in the Kan model. Table 1 summarizes a few examples of the computation result.
As was pointed out for ideal MHD case by Lee and Min [1996) . the equilibrium field line
curvature is too strongly localized near the equatorial plane that the field line bending
stabilizes the antisymmetric ballooning mode even in the present nonideal MHD formulation.
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N(0.0) 0.11 0.44 ky

B.(0.0) 2.7 6.3 2.7 6.3

e +0.043  +0.037 +0.052 +0.071 0 (ideal MHD)
Wreal 0.219  0.201 0.237  0.279 107

[‘]imagi 0 0 0 0

Wreal 0.235  0.212 0.255  0.299  3x107

@imagi 0 0 0 O

Table 1. ©°is in units of 7.5X107 sec™ oreal and @imag in units of 8.6x107 sec™’. Also. N(0.0)
in em™, B(0.0) in nT. and &, in m™. respectively. The computations are for the field line
of x =-4, and terminated at x =0 where eigenfunctions were required to vanish.

3.3 An analytic theory

Recently, Lee and Min [(1996] argued within the ideal MHD that the high beta tail-like
field line model might be unstable to antisymmetric balloon mode if the field line has a
sufficient field-aligned portion of a substantial curvature near the equatorial plane. We
wish to apply their argument to the present formulation. specifically, to equation (15) which
can be rewritten as follows.

fi(d/ds)(1/BdX/ds} + f0.°X + fw.X + f1.X = 0 (19)

where fi=Bva’, f2=1+kp/uon’e®. f3=-2Bx.k,/mone. and f1=(2Bx./p) (dp/dA).

We proceed to expand X in terms of the eigenfunctions of the incompressible ballooning
equation of ideal MHD, X' with the boundary condition that the perturbation is zero at
both ionospheric ends. Namely. X=X’ and this is substituted back into (19) to obtain
the following relation.

Ter(fa0.2 - 0 2% 1+ f0.) X, ' =0 (20)

Since we are interested in the case where Bx. (and so f3) is constant along the field line.
following the idea by Lee and Min [1996] . equation (20) implies that for each independent
Xt o (e 0, ¥+ f0.) = 0. Since at least one ¢ should be nonzero for nontriviality. it
follows that fa.2-02““+fw. = 0 for at least one eigenvalue 6c'*  Therefore. it is clear
that. for an imaginary ©. {(i.e., instability) to exist, at least one eigenvalue of ideal MHD
has to be unstable according to ©°'*" ( - f,*/4f». In other words. the stability of the
antisymmetric mode in equilibrium where Bx. is constant along the field line is determined

by that of ideal MHD. Once an unstable eigenvalue of ideal MHD is found, then the
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appropriate range of k, values for the unstable mode of the present "nonideal” MHD
ballooning can be selected from the relation o, "% ¢ - £;%/4f; .

4. Summary

In this work we have studied the stability of the two dimensional geotail model within
MHD approximation with a modified form of Ohm’s law in the high k, limit. By this limit,
we have obtained two coupled eigenmode equations which can be solved for each independent
field line. The derived equations resemble those of ideal MHD limit. but are modified in
some complex manner. The plasma compression effect in a form modified by the nonideal
Ohm’s law appears to couple the two equations.

The incompressible antisymmetric mode has been extensively tested numerically for a
number of equilibria of Kan [1973) . We have found no unstable Kan equilibrium in this
numerical study. As was pointed out by Lee and Min [1996) . the magnetic curvature in
Kan model is heavily localized only near the equatorial plane. In such a geometry, the huge
field line bending is necessarily created suppressing the antisymmetric mode even in this
nonideal MHD formulation.

Also. we have considered analytically the case where Bx. is constant along the field line,
following the idea of Lee and Min [(1996] . 1In this case. the stability to the antisymmetric
mode is determined by the ideal MHD. In ideal MHD. the field line needs to have a
sufficient field-aligned portion of a large enough curvature in order to become unstable to
the antisymmetric mode.

We have not attempted a comprehensive study of the stability of the tail to the
compressible mode. Since the compression effect appears to be modified in complicated
manner, it requires further intensive study in order to see if there still remains a
possibility for reducing the stabilizing contribution from the plasma compression.
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