자소 탐색 방법에 의한 온라인 한글 필기 인식

Online korean character recognition using letter spotting method

  • 발행 : 1996.06.01

초록

한글 필기는 항상 초성, 중성, 종성의 순으로 씌어진다. 본 논문은 이점을 이용하여 자소 탐색 모델을 설계하고 그 탐색 결과에 의거하여 글자를 인식하려는 온라인 필기 인식 방법을 제시하고자 한다. 기본 자소 모델은 은닉 마르코프 모델을 이용하고 자소 탐색 모델은 HMM의 망으로 구성한다. 자소 탐색은 Viterbi 알고리즘에 의한 정합으로 이루어지며 글자 인식은 이들 자소 가설 격자의 탐색으로 이루어진다. 인식 실험 결과는 간단한 인식기 구조에도 불구하고 정자체의 경우 87.47%에 달하는 상당한 인식률을 보였으며, 특히 자연스럽게 쓴 필기에서도 매우 훌륭한 자소 분할 결과를 얻을 수 있었다.

Hangul character always consists of consonants-vowel-consonants in order. Using this point, this paper proposes an approach to design a model for spotting each letter in Hangul, and then recognize characters based on the spotting results. The network model consist of a set of HMMs. The letter search is carried out by Viterbi algorithm, while character recognition is performed by searching the lattice of letter hypotheses. Experimental results show that, in spite of simple architecture of recognition, the performance is quite high reaching 87.47% for discrete regular characters. In particular the approach shows highly plausible segmentation of letters in characters.

키워드