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The Effects of Cache Memory on the System Bus Traffic
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ABSTRACT

It is common sense for at least one or more levels of cache memory to be used in these day’s computer systems. In this paper,
the impact of the internal cache memory organization on the performance of the computer is investigated by using a simulator pro-
gram, which is written by authors and run on SUN SPARC workstation, with several real execution trace files. 280 cache organi-
vations have been simulated using n-way set associative mapping and LRU(Least Recently Used) replacement algorithm with
write allocation policy. As a result, 16-way set associative cache is the best configuration, and when we select 256KB cache mem-
ory and 64 byte line size, the bus traffic ratio was decreased compared to that of the noncache system so that a single bus could
support almost 7 processors without any delay and degradation of hit ratio(hit ratio was 99.219%). The smaller the line size we
choose, the little fower hit ratio we can get, but the more processors can be supported by a single bus(maximum 18 processors).
Therefore, using a proper cache memory organization can make a single bus structure be able to support multiple processors with-

out any performance degradation.
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1. Introduction

It is widely recognized that main memory
and network latencies rapidly increase
because CPU cycle time decreases. The fea-
ture that perhaps most distinguishes very-
high-performance computers from more mod-
est ones is extremely high processor-memory
bandwidth. One alternative for the increased
performance without proportionately increas-
ing processor-memory bandwidth is to intro-
duce local memory, which is called cache
memory, on the same chip with the CPU.
Moreover, most CPU chips are now being
designed for integration into a massively par-
allel super computer, or a parallel worksta-
tion, and therefore optimizing memory hier-
archy utilization including cache and virtual
memory systems is critical. For all of these
reasons, optimizing the cache behavior has
become a major issue these days. In this
paper. the effect of the cache memory on the
system performance, especially on the system
bus traffic, will be investigated. so that
technical recommendations on the cache sizes
and cache line sizes for the single bus multi-
processor system can be given.

An important problem for designers of new
computer systems is the problem of estimat-
ing the performance of a new system. In
fact, the designer does not assess the perfor-
mance of a single new design, but rather
tries to assess the impact of specific features
of a design such as cache size, memory size,
and [/O bandwidth. A further complication is

that features such as cache size may be eval-
uated for a variety of sizes. Hence, the num-
ber of alternatives to examine can be fairly
large. The classic way to measure the perfor-
mance of a system is to simulate the behavior
of that system when executing a typical
workload. The workload used in the simula-
tion is produced by tracing the execution of
that workload on an existing real computer,
and the execution trace subsequently drives a
simulation of the design variation of interest.

To do this, we developed a cache simulator
program which could be used for simulating
various cache behaviors. The simulator uses
the real execution traces supplied by Morgan
Kaufmann Publishers, Inc., San Mateo,
California USA. The cache should not be so
large that it represents an expense out of
proportion to the added performance, nor
should it occupy an unreasonable fraction of
the physical space within the processor. In
other papers (3,4), therefore., they used rela-
tively small cache sizes(up to about 32K). In
this paper, however, we extend the cache size
up to 1M according to the present-day’s ten-
dencies to increase the on-chip cache size,
which may be feasible in the near future. In
addition, we extend the number of ways in
the set associative mapping memory so that
the effects of extending the number of ways
on the system performance are revealed. 16-
way set associative mapping was the best
technique.

In chapter 2, a few basic cache design ele-

ments that serve to classify and differentiate
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cache architecture are explained. This paper
also shows how the simulator works and how
the performance of the cache memory can be
optimized in chapter 3. In chapter 4. the con-
clusion derived from the simulation analysis

are given.
2. Cache Memory General

The sequence of memory addresses generat-
ed by a program typically exhibits the proper-
ties of temporal and spatial locality(4].
Temporal locality, or locality in time. means
that memory addresses recently referenced by
a program are likely to be referenced again in
the near future. Spatial locality means that
the address referenced by a program in a
short period of time are likely to span a rela-
tively small portion of the entire address
space. For example, some programs frequent-
ly operate large data structures in which the
consecutive elements of the structure are
located in sequential memory locations. Thus,
the memory addresses generated by a program
to access such structures are likely to be clus-
tered spatially into a small range of the
address space. Private data caches, which are
small, fast memories physically located near a
processor exploit these memory-referencing
properties to reduce the average time required
to access the larger main memory. By tem-
porarily storing in the cache a copy of a
value from the main memory that is being
actively referenced by a program. caches
amortize the time required to copy the memo-
ry location from the slower main memory into
the faster cache over several references to the
same and nearby memory locations.

In order to locate an item in such a cache,
it is necessary to have some function which

maps the main memory address into a cache
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location. For uniformity of reference. both
main memory and cache are divided into
equal-sized units, called lines. The placement
policy determines the mapping function from
the main memory address to the cache loca-
tion. The line replacement policy proposes to
select the line to be displaced when a miss
occurs. In this chapter, various issues in the

design of a cache are discussed.

2.1 Placement Policies

A key element of cache design is the map-
ping function, which maps blocks of memory
into cache locations. Three techniques can be
used: direct, associative, and set-associative.
We will examine these three alternatives with
an example. Consider a cache that can hold
64 Kbytes. And also, let us assume data is
transferred between main memory and the
cache in lines of 4 bytes each. This means
that the cache is organized as 16K lines of 4
bytes each. And also, let us consider a main
memory that hold 16 Mbytes, with each byte
directly addressable by a 24-bit address(2” =
16M). For mapping purposes, we can consider
the main memory to consists of 256 blocks(2™
' = 256) of 64 Kbytes each, which is same
size as the cache size. Each block consists of
16K lines as the 64-Kbyte cache.

Since there are fewer cache lines than main
memory lines, an algorithms is needed for
mapping main memory lines into cache lines.
Further, a means is needed for determining
which main memory line currently occupies a
cache line.

The simplest technique, known as direct
mapping, allows each line of main memory
blocks to be allocated into only one possible
cache line. As we mentioned above, direct
mapping allows each same-numbered line of

each block in main memory to be copied only
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16M Byte Main Memory 64K Byts Cache
Address Bbit Tag  Dwts
000000 [ Line 0 FF Line 0 | 0000
000004 Line | Line 1 0004
Block @ oo | Line 2 0 Line 2| 000
: Line 16K-1 01  |Lme 16K-1 |FFFC
QOFFFC
00000 | L 0
010004 | Line 1
Block ] (10008 | Line 2
OLFFFC | Line 16K-1
: Lie 0
B Line
Block 255 : Le 2
FFFFFC | Line 16K-1
Line Ward
Cache Address L 14 [ 2]
Tag Lins Ward
Msin Merucry Address | 8| 1 12 }

Figure 1. Direct Mapping

into the corresponding same-numbered line of
the cache. This is illustrated in Figure 1. The
mapping function is easily implemented using
the 24-bit address. The least significant two
bits serve to identify a unique byte within a
line of main memory. The most significant 8
bits serve as the tag number, which is copied
into the designated cache line along with the
line contents. The remaining 14 bits specify
one of the 2" = 16K lines. Thus, line 0 of
each block of main memory can be copied
only into cache line 0: line 1 of each block of
main memory only into cache line 1: and so
on, down to line 16K-1 which maps into cache
line 16K-1. Note that no two or more same-
numbered lines, each of which comes from
those blocks of main memory, can map into a
same cache line.

A read operation works as follows. The
cache system is presented with a 24-bit

address. The 14-bit line number is used as an

index of the cache to access a particular line.
If the 8-bit tag number matches the tag
number within that cache line, then the 2-bit
word number is used to select one of the 4
bytes in that line. Otherwise, the 22-bit
tag/line field is used to fetch a line from
main memory. The actual address that is
used for the fetch is the 22-bit field concati-
nated with two zero bits.

The direct mapping technique is simple,
inexpensive to implement and has short cache
access time. It's main disadvantage is that
there is a fixed cache location for any given
line of the main memory.

16M Byts Main Mamory 64K Cache Mamory

4 Bit
Address
000000 Lins ¢
000004 Line 1
000008 Lina 2
00000C :
16 Bit
Address 22bit Tag Data
0000 OSBAES Line 0
: 0004 3JFFFFF | Lins 1
163340 | Line 362256 0008 000002 | Line 2
A Q00C H
PFY8 000008 | Line 16K-2
FFFC | 000001 | Line 16K-1
FFFPFC | Line 4M-1

‘Word

Cache Addrens [ 14 [z}
Tag Word

Main Merory Address | 2 [z ]

Figure 2. Associtive Mapping

A technique that overcomes the disadvan-
tage of the direct mapping approach is asso-
ciative mapping., which permits a main mem-
ory line to be loaded into any line of the
cache. In Figure 2, the main memory address
consists of a 22-bit tag and a 2-bit byte num-
ber. A main memory line can be stored in
any cache line, and it’s 22-bit tag is stored

with it. To determine whether a block is in
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the cache. logic is needed to simultaneously
examine every line’s tag for a match.
Replacement algorithms. dissussed in next
section, are designed to maximize the hit
ratio. The main disadvantage of the associa~
tive approach is the complex circuitry
required to examine the tags of all cache
lines in parallel.

Set~associative mapping is a compromise
that captures the advantage of both the
direct and associative approaches. Referring
back to Figure 1, only one of the same-num-
bered lines of 256 main memory blocks could
occupy the assigned cache line in the case of
direct mapping organization, In the set-asso-
ciative mapping., however, more than one line
of those same-numbered main memory lines
from each of 256 blocks can be copied into
one cache line. As we see from Figure 3. two-
way set-associative mapping makes 2 same-
numbered main memory lines be located into
one cache line. Thus, it decreases the number
of lines in cache half way, and increases the
number of tag bits by one. If we consider 4-
way set associative mapping, it will decrease
the number of cache lines by the factor of
one fourth. and increase the number of tag
bits by two.

The direct mapping and 2.4.8,16. and 32 -
way set associative mappings are used for
simulation work in the next chapter. In gen-
eral. direct mapping is simple and easy to
implement. However, the performance is not
better than that of set-associative mapping as

we will see from our simulation results.

2.2 Replacement Policies

When the cache is full and a new line is
brought into the cache. one of the existing
lines must be replaced. For direct mapping,.

there is only one possible cache line for any
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Figure 3. 2-way Set-Associative Mapping

particular main memory line, and no choice is
necessary. For associative and set-associative
mapping, a replacement algorithm is needed.
A number of algorithms have been tried.
Probably the most effective is LRU(Least-
Recently Used). This policy replaces the block
in the set which has been in the cache
longest with no reference to it. Another pos-
sibility is FIFO(First-In First-Out) which
replaces the block in the set which has been
in the cache longest. FIFO is easily imple-
mented as a round-robin of circular buffer
technique. Still another possibility is
LFU(Least-Frequently Used) which replaces
that block in the set which has experienced
the fewest references. Random algorithm
replaces a line from among the candidate
lines at random. In this paper. LRU algo-
rithm is used for simulation work as we will

see in the next chapter.

2.3 Write Policies
An important aspects of cache organization

is concerned with memory write requests.
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When the CPU finds a word in cache during
a read operation, the main memory is not
involved in the transfer. However, if the
operation is a write, the operation should be
handled cautiously for memory consistancy.
There are three basic ways that the system
can process : write-through, write-back, and
write once.

The simplest procedure is to update main
memory with every memory write operation,
with cache memory being updated in parallel
if it contains the word at the specified
address. This is called the write-through
method. This method has the advantage that
main memory always contains the same data
as the cache. This characteristic is important
in systems with direct memory access trans-
fer.

The second procedure is called the write-
back method where only the cache location is
updated during a write operation. The loca-
tion is then marked by a flag so that later
when the word is removed from the cache it
is copied into main memory. Write-back
method has more severe coherency problems
than write-through, since even main memory
does not always contain the current version
of a particular memory location. However,
the bus traffic is less than the one of the
write-through method. This method is used
for the simulation in this paper.

The third alternative is the write-once
method which uses write-back for locations
written repeatedly to minimize bus traffic,
but employs write-through on previously
unmodified data in order to assure exclusivity
and minimize the writing of unmodified data.
This method is usually used for the multi-
cache system because multiple caches present
serious coherency problems. In this case, two

bits defining one of the four states for the

associated data are associated with each line.
The four states are Invalid, Valid, Reserved,
and Dirty.

3. Simulation

The most accurate method of determining
the performance of a specific computer
design, or proving the validity of a new
architectural approach, is to actually build it
and verify it's performance. Actually build-
ing a complete computer system just for veri-
fication of a certain improvement, however,
is very time consuming and expensive. It also
requires the designer to select specific values
for architectural parameters of the new sys-
tem without knowing what reasonable values
of the parameters may be for that new sys-
tem. Therefore. before actually building it
while consuming time and a great deal of
labor, it is desirable to explore the limit of
the design space using simulation technology.
A large number of potential design option can
be quickly examined by varying the various

parameters.

3.1 Simulator Program Used

3.1.1 Traces Used

In order to evaluate the behavior of the
cache memory working on a single bus struc-
tured computer, a simulator program had
been developed by the author using C pro-
gramming language which is run on the SUN
SPARC work station. The program uses four
different real traces which is extracted from
VAX computer. These traces have been sup-
plied by MORGAN KAUFMANN PUBLISH-
ERS. INC. Each line of the trace file contains
a 8-bit label and 32-bit virtual address. The
label gives the access type of a reference.

0: read data
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1: write data

2! instruction fetch

4. escape record(causes cache flush)

The address is a hexadecimal virtual

address between 0 and {f{{{{{f inclusively. As
a matter of fact, VAX series has variable
length instructions and it wuses the
Synchronous Backplane Interconnection (SBID)
bus, out of which 32-bit lines are allocated
for information transfer. Thus, CPU fetches
32-bit information from main memory when-
ever it needs memory access. An instruction
consists of a 1- or 2-byte op code followed by
from zero to six operand specifiers, depending
on the op code. The minimum length of an
instruction is 1 byte. and instructions of up
to 37 bytes can be constructed(6}. Since the
CPU does not know the length of the next
instruction to be fetched, a typical strategy is
to fetch a number of bytes or words equal to
at least the longest possible instruction.
Thus, without cache memory, each access
sometimes fetch useless portion of main mem-
ory locations. that is. multiple instructions,
or it can spend more than one memory cycle
for only one instruction fetch. In the case of
the system which has cache memory in it. it
can do useless portion, but it stores them into
cache memory for later use. As we will see
later in this chapter. therefore. the bus traf-
fic of the cache structured system makes a
big difference from the one which does not

have the cache memory in it.

Table 1a

Direct Mapping

Name of outfile = dirtot.d
Write Policy used = Write back

Trace Programl used = lisp.dat, 291390
Trace Program?2 used = pasc.dat, 422090
Trace Program3 used = forf dat. 368212
Trace Program4 used = macr dat, 342828

230

Bus Traffic Ratio
256 512 1K K 4K 8K 16K 32K

& 11700 10100 8123 6185 4531 3403 223 157
16 190.95 160.77 12897 9830 17225 5499 3568 U™
32 35285 28937 230.21 17152 12589 97.32 6538 4527
64 75428 595.31 464.37 335.47 253.09 198.11 13274 9458
128 1806.10 1342.49 1027.60 T14.00 533.23 420.90 279.48 202.63
206 4717.60 342015 2550.95 1797.08 1282.42 1009.78 £30.86 469.86
512 9435.19 931219 6746.10 4792.54 3514.14 2635.36 1519.46 1120 %0

Miss Ratio
256 512 1K 2K 4K 8K 16K 32K

§ 4852 41.61 33.06 2537 1852 1376 898 646
16 3918 3273 25,97 1980 1445 108 7.07 492
323622 2925 2290 1690 1229 935 627 4.3
64 39.05 30.35 2311 1644 1230 952 633 4.5

128 4755 3457 2579 1749 1295 1012 6.63 4.81
256 63.03 4491 3252 2236 1553 1216 T4 556
h12 63.03 62.12 43.81 30.44 2170 1592 885 650

Tracel Trace2 Trace3  Traced

Fraction of Inst. fetches 0.58 0.46 0.52 0.55
Fraction of Data fetches  0.34 0.29 0.29 0.28
Fraction of Writes 0.08 0.25 0.19 0.
Number of Cache Flushes 0 0 0 ]

3.1.2 Simulator Program Study

The program simulates various kinds of
unified cache memory structures using direct
mapping or n-way set associative mapping
functions. It adapts write-back replacement

policy and write allocation.
Table 1b
Direct Mapping

Name of outfile = dirtote.d
Write Policy used = Write_back

Trace Programl used = lisp.dat, 291390

Trace Program2 used = pasc.dat, 422090

Trace Program3 used = forf.dat, 368212

Trace Programd4 used = macr.dat. 342828
Bus Traffic Ratio

4K 8K 16K 32K 64K 128K 286K 512K

8 4531 34.03 2223 1577 1193 927 153 697
16 7225 5493 3568 2472 1794 1359 1082  9.68
32 12589 97.32  65.38 4537 2081 21.81 17.02 1466
64 253.09 198.11 13274 9458 5510 39.24 30.08 2532
128 533.23 420.90 279.48 202.63 117.47 83.78 63.62 53.¥4
256 1282.42 1009.78  630.86 469.86 263.56 192.08 145.54 121.93
5123514.14 2635.36 1519.46 1120.90 649.55 484.90 335.18 279.15
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Miss Ratio
4K 8K 16K 32K 64K 128K 256K 512K

8 18.52 13.76 8.98 6.46 5.06 4.08 3.50 3.32
16 14.45 10.85 7.07 4.92 3.69 290 245 227
32 12.29 9.35 627 432 295 224 1.8 168
64 12.30 9.52 6.33 4.51 265 195 1.59 141
128 12.95 10.12 6.63 4.81 278 204 164 145
256 15.53 12.16 7.44 556 3.04 226 180 1.58
512 21.70 1592 8.85 6.50 3.63 274 201 174

Tracel Trace2 Traced Traced

Fraction of Inst. fetches 0.58 0.46 0.52 0.55
Fraction of Data fetches 0.34 0.29 0.29 0.28
Fraction of Writes 0.08 0.25 0.19 0.17
Number of Cache Flushes 0 0 0 0

When the program is executed it accepts
various simulation parameters including map-
ping procedure to be used(direct mapping or
n-way set-associative mapping)., the desired
starting cache size, the number of trace files
to be used, the number of main memory
blocks which occupy a cache line, and the
input file name(s) and output file name.
When all the simulation parameters are
given, it reads a 5-byte information from the
given trace file. which consists of a l-byte
label and a 4-byte virtual address, and it cal-
culates bus traffic ratio and miss ratio for
each of 56 cache organizations starting from
the desired cache size entered and 8-byte line
size., while increasing the line size up to 512
bytes (starting line size is 8 bytes) and cache
size. As a result, it gives us a bus traffic
ratio and miss ratio table for 56 cache organi-
zations at once(see Table 2, 3, 4, 5). When
the number of trace files greater than one is
entered, it calculates bus traffic and miss
ratios for each of all the trace files entered
and then takes an arithmetic averages for
each of bus traffic and miss ratios, so that it
gives much more reliable and realistic result

than the one of a specific trace file.(Table 1,

231
6 - 10)
Table 2
4-way Set Associative Mapping
Name of outfile = set4lisp.d
Write Policy used = Write_back
Trace Programl! used = lisp.dat, 291390

Bus Traffic Ratio
8K 16K 32K 64K 128K 256K 512K 1M

8 569 325 233 215 215 215 215 215
16 875 446 2.81 244 243 243 243 243
32 1585 711 392 292 287 2.87 287 287
64 3515 1502 6.70 3.83 356 3.55 3.55 3.55
128 97.83 3865 1823 578 4.60 4.56 4.56 4.56
256 362.01 146.87 62.16 1535 6.81 6.19 6.19 6.19
512 1119.84 554.10 331.96 130.42 12.74 9.09 9.05 8.83

Miss Ratio
8K 16K 32K 64K 128K 256K 512K M

8 228 139 112 108 108 108 1.08 1.08

16 177 0.93 0.67 0.61 061 0.61 0.61 0.61
32 1.61 073 045 03 0.3 0.3 03 036

64 1.80 0.76 037 024 022 022 022 0.22
128 254 096 047 017 0.14 0.14 014 0.14

256 4.65 1.81 077 0.20 0.10 0.10 0.10 0.10
512 7.29 3.59 2.13 0.81 0.09 0.07 0.07 0.07

Tracel

Fraction of Inst. fetches 0.58
Fraction of Data fetches 0.34
Fraction of Writes 0.08
Number of Cache Flushes 0

3.2 Simulation Result Analysis

Cache performance is greatly affected by
cache parameters, particularly total size and
line size. In addition, performance varies
greatly depending upon the mapping proce-
dure used and the trace program used. say.
application executed. The simulator program
produces a table to meet various simulation
parameters entered. The table shows the bus
traffic ratios and miss ratios for various
cache memory organizations., The bus traffic
ratio is the ratio of the total traffics of the

cache organized system to the total traffics of

231
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the noncache organized system. I[n this sec-
tion, the simulation result is analyzed.
Especially, the produced table shows the
memory pollution phenomena for relatively
small cache sizes. That is, there is a line size
point where the miss ratio is not reduced fur-
ther. rather increased. even though the line

size is increased.

Table 3

4-way Set Associative Mapping

Name of outfile = setdpasc.d
Write Policy used = Write back
Trace Programl used = pasc.dat, 422090

Bus Traffic Ratio
8K 16K 32K 64K 128K 256K 512K 1M

8 3316 1266 520 334 314 312 312 312
16 57.29 2490 9.00 450 3.93 3.8 3.83 3.83
32 101.07 49.15 19.25 6.83 517 4.80 4.80 4.80
64 176.41 101.89 45.80 12.89 749 6.21 6.13 6.13
128 337.87 213.91 105.17 33.46 12.43 8.58 8.07 8107
256 649.34 437.84 250.59 102.21 37.15 12.43 10.90 10.74
512 1315.21 958.58 597.04 297.19 112.17 37.27 15.41 15.04

Miss Ratio
8K 16K 32K 64K 128K 256K 512K M

8 13.81 531 22 1.61 156 15 156 156
16 11.90 523 1.90 106 0.97 096 096 0.9
32 10,40 515 1.99 0.77 0.63 060 0.60 0.60
64 898 5.24 235 070 0.44 039 0.38 038

128 8.49 5.38 2.61 0.88 0.35 0.26 025 025
256 7.92 534 3.056 1.30 049 018 0.17 0.17
512 792 574 354 1.8 069 0.2 0.12 0.12

Tracel
Fraction of Inst. fetches 0.46
Fraction of Data fetches 0.29

Fraction of Writes 0.25
Number of Cache Flushes 0

Table 4

4-way Set Associative Mapping

Name of outfile = setd4forf.d
Write Policy used = Write_back
Trace Program = forf.dat, 368212

232

Bus Traffic Ratio
8K 16K 32K 64K 128K 256K 512K M

8 23.63 19.00 14.44 11.12 9.36 8.78 869 868
16 33.74 27.11 20.74 1538 12.44 11.18 10.96 10.94
32 52.36 41.42 31.98 22.84 17.75 14.97 14.30 14.22
64 95.51 66.83 52.35 37.47 27.05 21.13 19.12 18.83
128 202.69 120.78 89.92 65.00 44.51 31.69 26.21 2521
256 453.56 247.67 163.00 117.62 79.75 51.92 37.53 34.19
5121170.04 646.83 356.28 226.37 154.03 95.35 59.48 48.46

Miss Ratio
8K 16K 32K 64K 128K 256K 512K 1M

8 9.49 7.69 6.00 4.88 4.44 435 4.34 4.3
16 6.59 532 415 3.25 286 275 273 273
32497 392 3.06 229 194 181 1.78 1.78
64 444 304 240 1.77 1.38 1.22 1.18 1.18

128 461 266 1.98 145 105 0.86 080 0.79
256 498 2.65 1.73 1.26 0.88 0.64 0.55 0.53
512 6.256 3.38 1.83 1.16 0.80 0.54 040 0.37

Tracel
Fraction of Inst. fetches 0.52
Fraction of Data fetches 0.29
Fraction of Writes 0.19
Number of Cache Flushes 0

3.2.1 Direct mapping versus n-way
Set- Associative mapping

The main argument for using a set associa~-
tive cache rather than a direct mapped cache
is its better hit ratio. As we briefly men-
tioned about mapping procedures in chapter
2, direct mapping is simple, fast, and easy to
implement. However, it has worse hit ratio

than set-associative mapping. We simulated

Table 5
4-way Set Associative Mapping

Name of outfile = setdmacr.d
Write Policy used = Write back
Trace Programl used = macr.dat, 342828

Bus Traffic Ratio
8K 16K 32K 64K 128K 256K 512K M

8§ 2111 1781 1518 1205 9.08 815 7.94 793
16 3243 27138 22,97 1892 13.97 1144 10.77 10.72
32 5397 4554 3777 3091 2337 17.23 15156 1488
64 9806 80.26 66.92 5251 40.04 27.81 2178 20.53
128 208.84 153.00 127.07 98.14 70.40 46.97 32.76 28.52
256 549.82 322.46 250.75 192.90 132.71 82.72 52.59 40.01
512 1586.73 868.52 541.57 390.88 262.59 146.43 87.78 56.68
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Miss Ratio

8K 16K 32K 64K 128K 256K 512K IM

8 791 671 580 4.92 418 400 397 3.9
16 578 4.90 4.18 359 3.01 274 268 268
32 4.57 3.85 324 274 229 1.96 1.87 1.86
64 3.97 3.21 269 219 1.8 146 1.32 1.28

128 4.20 294 243 191 146 1.13 094 0.89
256 547 3.05 232 178 1.28 090 0.70 0.62
512 7.94 4.14 247 175 119 073 053 043

Tracel
Fraction of Inst. fetches 0.55
Fraction of Data fetches 0.28
Fraction of Writes 0.17
Number of Cache Flushes 0

various kinds of cache organization including
direct mapping, and 2, 4. 8, 16, 32-way set
associative mapping. As a result, we found
that 16-way set associative mapping was the
best configuration, say, it shows the lowest
miss ratio and bus traffic ratio. Refer to
Table 1b. 6, 7. 8. 9, 10, and Figure 4. 5, 6,
7.

Figure 4. Bus Traffic Ratios for 8KB Cache

When we run our simulator program with
same trace files and the same number of ref-
erences, in the case of 8KB 16-way set-asso-
ciative mapping. miss ratio is reduced more
than 50 percent compared to the direct map-
ping, and 2-way mapping improves approxi-
mately 40%(see Table 1b. 7, 9, and Figure5,
7). In (2.7). the authors reported that using
a 2-way set associative cache in place of a
direct mapped cache removes about 30 percent
of the misses.

In this paper, we can also observe dramatic
improvement in bus traffic ratio. The bus
traffic ratio declines much more dramatically
than the miss ratio as the line size is
increased. In the case of 8KB 16-way set-
associative mapping, bus traffic ratio is
reduced more than 50 percent compared to
the direct mapping. and 512KB cache
improves approximately 80%(see Table 1b, 9,
and Figure4, 6).

4 "co--...,'

o
L

8 b 2 o B 5 k]
Figure 5. Miss Ratios for 8KB Cache
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Figure 8. Bus Traffic Ratios for 8KB Cache

Figure 7. Miss Ratios for 512KB Cache

3.2.2 Characteristics of Applications
(Trace Files)

The cache performance greatly varies
depanding upon the trace files, cache sizes,
and line sizes used. The results sre shown in
Table 2 - 5. In tables, the bus traffic and
miss ratios for each seperate trace file are
shown for a variety of cache sizes, with the
line sizes of 8, 16, 32, 64, 128, 256, and 512
bytes. The characteristics of each trace file
for 8KB and 512KB cache memories are
depicted in Figure8, 9, 10, and 11.

For a relatively small cache(8KB), trace file
lisp.dat shows the best bus traffic and miss
ratios and pasc.dat does the worst for rela-
tively small line sizes up to 256B. As the line
size gets larger than 256B, however, lisp.dat
gives wors results due to memory pollution
which will be mentioned in next section. and

forf.dat gives the best results.
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Figure 9. Miss Ratios for 8KB Cache

As we see from Table 2, 3, 4, and 5,
lisp.dat has a relatively small write operation
fraction(just 8% of the whole references) and
pasc.dat has the largest fraction of
writes(25%).

From this, we understand that lisp.dat has
poor spacial locality, but it shows nice results
due to the relatively small fraction of writes.
The trace file pasc.dat has nice spacial locali-
ty. however, so that it could give favorable
results when the cache size gets larger.

For a relatively large cache memory(see
Figurel0 and 11), as we could imagine,
lisp.dat and pasc.dat give improved perfor-
mance due to the small write fraction and the

beautiful spacial locality, respectively.

3.2.3 Line Sizes and Memory pollution
In general, as the line size is increased, the

bus traffic is increased and the miss ratio is

Figure 10. Bus Traffic Ratios for 512KB Cache

Figure 11. Miss Ratios for 512KB Cache
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decreased. For the small cache sizes, keeping
the total size constant(for example, 8K
cache), as the line size is increased. the miss
ratio generally declines up to a point - 64
bytes for 8K cache, 128 bytes for 16K cache -
then increases again{(see Table6 or Figureb).
This increase, known as memory pollution(8].
results from the fact that there should be
fewer lines due to large line size. so some
unneeded data occupies cache instead of use-
ful data that happens not to be
contiguous(see Table 6). The miss ratio
declines by 45 percent as the line size
increased from 8 to 64 bytes. However. as
the cache size increases (for example, 512K
cache)., memory pollution does not occur
because there are enough numbers of lines in
cache(see Figure7). Same thing will be true
for the larger cache organizations with larger
line size. Thus, in order to for us to avoid
memory pollution, we'd better increase cache

size if possible.

3.2.4 Optimal Line Size for a Uniprocessor
System

As we see from the tables. as the line size
is increased, the miss ratio generallydeclines
favorably. In contrast to the miss ratio, how-
ever, the bus traffic always increases as the
line size is increased. The bus traffic grows
more rapidly than the miss ratio declines for
all the cache sizes. Thus, for a uniprocessor
system, the line size will be able to be
increased in order to decrease the miss ratio
as long as the bus traffic falls down within
the range of 100% and memory poliution is
not occurred. With 8K cache. for example, we
can use 64B line with little bus latency, and
for 64K cache we can further increase the
line size up to 256B without any performance
degradation. For 256K cache, 512B line will
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be good enough for the profer operation(see
Table6).

Table 6

4-way Set Associative Mapping

Name of outfile = setdtot.d

Write Policy used = Write back

Trace Programl used = lisp.dat, 291390
Trace Program?2 used = pasc.dat. 422090
Trace Program3 used = forf.dat, 368212
Trace Program4 used = macr.dat, 342828

Bus Traffic Ratio
8K 16K 32K 64K 128K 256K 512K 1M

8 2090 1318 9.29 717 593 555 547 547
16 3306 2096 1388 1031 813 722 700 6.98
32 5581 35.80 23.23 15.88 1229 997 9.28 919
64 101.28 66.00 42.94 26,67 19.53 14.67 1265 1226
128 211.81 131.58 85.10 50.59 3298 22.95 17.90 16.59
256 503.68 288.71 181.63 107.02 64.10 38.32 26.80 2278
512 1297.95 757.01 456.71 261.21 135.38 72.04 4293 3225

Miss Ratio

8K 16K 32K 64K 128K 256K 512K M

8 837 527 3.79 312 282 2.7 2.74 273
16 6.51 409 273 213 18 176 1.75 1.74
32 539 341 219 1.54 131 1.18 115 115
64 480 3.06 195 1.22 096 0.82 0.78 077

128 496 298 1.88 1.10 0.75 0.60 0.53 0.52
256 5.75 3.21 1.97 1.13 069 046 0.38 0.35
512 17.35 4.21 249 1.38 0.69 040 028 0.25

Tracel Trace2 Trace3 Traced

Fraction of Inst. fetches 0.58 0.46 0.52 0.55
Fraction of Data fetches 0.34 0.29 0.29 0.28
Fraction of Writes 0.08 0.25 0.19 0.17
Number of Cache Flushes 0 0 0 0

3.2.5 The Optimal Number of Processors
which can be supported by a Single Bus

Since the gap between main memory access
time and processor cycle time is continuously
increasing, processor performance dramatical-
ly depends on the behavior of caches, and
particularly on the behavior of small on-chip
caches. Most of the recently introduced
microprocessors have relatively small on-chip

caches. High clock frequency and/or parallel
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instruction issuing are used. yet main memo-
ry access time remained approximately con-
stant for several years(around 100ns) and rel-
ative miss penalties become very high even
when second-level caches are used. As cache
misses induce long pipeline stall. reducing the
miss ratio has become an important challenge
for microprocessor designers. If the miss ratio
is low. the cost of cache misses doesn’t domi-
nate on execution time and if the cache

access time is short. the cache does not slow

Table 7

2-way Set Associative Mapping

Name of outfile = set2tot.d
Write Policy used = Write_back

Trace Programl used = lisp.dat, 291390

Trace Program2 used = pasc.dat, 422090

Trace Program3 used = forf.dat. 368212

Trace Program4 used = macr.dat, 342828
Bus Traffic Ratio

8K 16K 32K 64K 128K 256K 512K IM

8 2344 1573 1057 793 653 578 554 549
16 3692 2475 1625 11.78 9.25 767 714 7.0l
32 6429 4289 27.34 19.06 14.04 10.83 960 95.26
64 120.11 8238 5159 34.26 2289 1611 1337 1242
128 252,52 168.60 102.93 65.22 39.84 25.49 19.40 1699
256 581.77 399.81 232.99 146.53 78.27 44.66 3047 2419
512 1563.46 1020.67 589.52 348.38 175.77 93.29 61.14 45.76

Miss Ratio
8K 16K 32K 64K 128K 256K 512K 1M

8 942 6.32 4.33 3.40 301 280 27 274
16 7.28 4.85 3.21 241 205 1.8 176 17
32 623 4.07 260 1.84 147 L24 117 115
64 567 378 235 1.57 1.12 0.87 080 0.77
128 591 3.82 229 143 091 065 05 0.52

256 6.64 449 259 157 084 052 041 036
512 8.93 579 3.3 191 093 053 039 033

Tracel Trace2 Trace3 Traced

Fraction of Inst. fetches 0.58 0.46 0.52 0.55
Fraction of Data fetches 0.34 029 0.29 0.28
Fraction of Writes 0.08 0.25 0.19 0.17
Number of Cache Flushes 0 0 0 0

down the clock frequency. Therefore, CPU
will feel likely as if it should have a large
main memory which has the short access time
of cache memory. However, in the case of the
multiprocessor system which has a single
shared bus, it was well known that a low
miss ratio will increase the bus traffic ratio
which is the greatest bottleneck in the single
bus multiprocessor systems. With high hit
ratio the single shared bus can’t support the
given number of processors without bus laten-
cies due to the burst of traffic. Thus, by
compromizing these two aspects, we can
reduce the effective memory access time and
bus traffic ratio for the single shared bus
multiprocessor system.

Uptill now. the system which has a single
bus has been simulated. The bus system
which has 32 information lines is assumed.
An four-byte transfer, therefore, is counted
as one cycle. The traces are for a 32-bit
machine, and so a minimum of 32-bit bus is

a more realistic assumption. The bus traffic

Table 8

8-way Set Associative Mapping

Name of outfile = set8tot.d
Write Policy used = Write_back

Trace Programl used = lisp.dat, 291390

Trace Program2 used = pasc.dat, 422090

Trace Program3 used = forf.dat, 368212

Trace Programd used = macr.dat, 342828
Bus Traffic Ratio

8K 16K 32K 64K 128K 256K 512K 1M

8 1984 1226 873 700 572 551 547 547
16 31.9 19.25 12.80 10.01 7.8 711 6.98 698
32 5338 3398 2091 1515 1190 964 921 919
64 9546 6299 37.94 2516 1875 1401 1240 1225
128 189.70 122.33 76.02 47.05 30.60 21.99 17.24 16.52
256 462.82 264.55 162.16 98.96 55.82 36.66 25.51 22.62
512 1249.60 684.22 366.67 217.32 118.20 63.75 40.59 31.65
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Miss Ratio

8K 16K 32K 64K 128K 236K 512K M
B7.92 488 338 306 277 274 273 273
16 6.27 373 2501 207 1.8 175 1.75 174
32 513 324 1.95 148 1.28 116 115 1.15
64 448 294 170 1153 093 08 077 037
128 441 278 166 1.01 070 058 052 052
256 5.27 294 1.74 104 039 044 037 035
512 7.04 378 1.94 113 060 035 027 025

Tracel Trace2 Trace3d Traced

Fraction of Inst. fetches 0.58 0.46 0.52 0.55
Fraction of Data fetches 0.34 0.29 0.29 .

Fraction of Writes 0.08 0.25 0.19 0.17
Number of Cache Flushes 0 0 0 0

ratio shown in each table is given as a per-
cent of the number of accesses that would be
required if no cache were present. If we {ix
the cache size 256K bytes. 64-byte line size
shows 99.21% hit ratio and 13.62% bus traf-
fic ratio(see Table 9). This tells us when we
use 256K byte cache and 64-byte line size for
a uniprocessor system. more than 5% of the
total executing time keeps the bus idle' For
the line sizes which are smz.ler than 64 bytes
the effect is even more dramatic: for R-hyte
line size the bus traffic ratio is 5.5% 30 that
only 5.5% out of the total execution time
makes the bus busy with 95.26% hit ratio
which is not that bad. Thus. if bus traffic is
not a potential bottleneck. the greater the
line size, the better the system performance.
With 512-byte line size, for example. we can
get 99.66 % hit ratio without any bus delay.
Increasing the line size from one bus
cycle(four bytes) to twoleight bytes). howev-
er. decreases the miss ratio by 30 to 40 per-
cent increasing the bus traffic by 20 percent.
As we increase the line size further, howev-
er.the bus traffic is increased much more
rapidly than the miss ratio declines. What if

we have multiple processors to be supported
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by this single bus at the same time? If ten
processors were to be supported. 32 byte line
size is optimal with 98.85% hit ratio. Eight
byte line size would be optimal for twenty

processor system. Thus, the optimal line size

Table 9

16-way Set Associative Mapping

Name of outfile = set16tot.d
Write Policy used = Write_back

Trace Program! used = lisp.dat, 291390

Trace Program2 used = pasc.dat, 422090

Trace Program3 used = forf{ dat. 368212

Trace Programd4 used = macr.dat, 342828
Bus Traffic Ratio

8K 16K 32K 64K 128K 256K 512K 1M

8 1921 1172 849 699 562 550 547 547

16 3135 1830 1236 997 764 708 698 698
2 5202 3275 2026 1486 1179 952 920 9.19
64 90.23 6172 36.29 2423 1864 13.62 1231 1225
128 178.60 120.16 7161 4523 30.01 21.62 16.93 16.52
256 44884 250.05 160.14 89.86 54.17 36.03 24.82 2253
512 1203.06 640.94 352.45 205.41 110.36 60.45 39.99 31.34

Miss Ratio
8K 16K 32K 64K 128K 256K 512K ™M
8 7.64 4.66 348 306 275 274 273 273
16 6.15 3.53 243 206 1.8 175 1.74 1.74
32 500 309 1.89 145 127 116 115 115
64 423 2.8 161 111 092 079 077 077
128 411 272 155 097 069 057 052 052
256 511 276 1.72 0.92 057 0.43 036 0.35
312 673 351 1.86 1.05 055 034 027 0.24
Tracel Trace2 Trace3 Traced
Fraction of Inst. fetches 0.58 0.46 0.52 0.55
Fraction of Data fetches 0.34 0.29 0.29 0.28
Fraction of Writes 0.08 0.25 0.19 0.17
Number of Cache Flushes 0 0 0 0

varies depending upon the number of proces-
sors to be supported by a single bus.
However, we have another problem related
with this small line size. Small lines are very
much costly in that they greatly increase the
overhead of the cache: an address tag. n(say.

16 here) counters for replacement policy, and
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one status bit are normally stored in the
cache for each line. The smaller the line size
is, the more lines, and so the more tag bits
should be stored in the cache. This is one of

the problems which needs further study.

Table 10
32-way Set Associative Mapping

Name of outfile = set321tot.d
Write Policy used = Write_back

Trace Programl used = lisp.dat. 291380

Trace Program?2 used = pasc.dat, 422090

Trace Program3 used = forf.dat, 368212

Trace Program4 used = macr.dat, 342828
Bus Traffic Ratio

8K 16K 32K 64K 128K 236K 512K 1M

8 3764 2544 1907 1525 1359 13.61 14.36 1572
16 6347 43.32 29.85 2332 1991 1890 19.81 2L4!
32 109.29 7435 5L11 36.90 30.40 2695 27.41 30.30
64 202.86 134.82 92.03 62.76 47.34 4140 3938 4264
128 405.05 269.61 181.38 11349 83.76 64.28 61.23 60
256 865.29 598.53 380.37 237.61 154.17 112.72 9159 89.30
512 none 1320.94 865.12 527.03 325.64 213.04 167.10 136.83

Miss Ratio
8K 16K 32K 64K 128K 256K 512K 1M

8 17.23 11.72 8173 690 6.06 593 596 598
16 1444 990 6.82 523 441 410 412 410
32 1247 852 582 412 334 291 28 291
64 1160 17.76 524 349 261 225 207 2.07

128 11.80 7.77 5.18 3.21 233 176 162 149
256 12.83 8.70 548 336 215 153 123 L1
512 none 9.75 633 374 225 148 1.13 087

Tracel Trace2 Trace3 Trace4

Fraction of Inst. fetches 0.58 0.46 0.52 0.55
Fraction of Data fetches 0.34 0.29 0.29 0.28
Fraction of Writes 0.08 0.25 0.19 0.17
Number of Cache Flushes 0 0 0 0

4. Conclusion

As the integration density increases, caches
may be integrated on the microprocessor chip.
Yet. on-chip cache sizes remain limited,
therefore the available space must be cau-

tiously used. The objective of this work is to

investigate the effect of cache memory on the
system performance. Thus, we have developed
a cache memory simulator program, which
simulates various kinds of unified cache orga-
nizations and produce useful information. In
our program, 32-bit bus. direct or n-way set
associative mapping functions, LRU replace-
ment policy, write back policy, and write
allocation are introduced. We simulated vari-
ous kinds of cache organization including
direct mapping. and 2, 4, 8, 16, 32-way set
associative mapping. As a result, we found
that 16-way set associative mapping was the
best configuration. say, it shows the lowest
miss ratio and bus traffic ratio. 32-way map-
ping does not improve the performance,
rather degrades it.

As we mentioned in chapter 3., the system
that has a small cache memory with relative-
ly large line size creates a serious problem,
called memory pollution. For us in order to
avoid this problem, relatively large cache
memory is suggested. For a uniprocessor sys-
tem. we can select large line size for high hit
ratio as long as the bus traffic ratio does not
go over 100 percent and memory pollution can
be avoided.

When we consider multiple processors in a
single bus organized system, the optimal line
size varies depending upon the number of
processors to be supported by a single bus and

favorable hit ratio if needed.
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