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1. INTRODUCTION

A time-domain method(e.g., Isaaction et
al., 1991), based on the second order
perturbation expansion and boundary integral
method, has been developed to study the
nonlinear properties of the floating structure-
wave interaction. Although the method is
suitable to solve the nonlinear wave-

selge, o of 4458719 A% Boyled ¥

structure interaction problems in irregular
wave field, it requires long computational
time until waves and motions of a floating
structure attain a stationary state by a
time-stepping procedure.

On the other hand, a frequency-domain
method, which is also based on the second
order perturbation expansion, is also available
to predict the wave-structure nonlinear in-

* Member, Department of Ocean Civil Engineering, Korea Maritime University.



38 K. D. Kim

teraction problems in case of regular waves,
and to investigate the fundamental nonlinear
characteristics of the wave-structure interac-
tion. The frequency-domain method can be
classified in three groups, that is, the methods
based on 1)Green’s function (Vada, 1987 ;
Mclver et al., 1990 ; Palm, 1991 ; Kioka et al.,
1993) ; 2)Green theorem (Yoshida et al., 1989)
and 3)potential matching method with eigen-
function expansion (Massel, 1983 ; Yoshida et
al., 1990). These methods have been applied
to a fixed submerged structure such as a sub-
merged breakwater and a horizontal circular
cylinder. '
In this paper, nonlinear theory based on the
frequency-domain method is newly developed
to evaluate the wave deformation due to a
submerged and moored floating structure with
arbitrary shape, and the nonlinear dynamic
responses of the structure. Theoretical for-
mulation is made by the second order
perturbation expansion and boundary integral
method. Validity of the present theory is
verified by comparing its results with ex-
perimental values obtained for the airchamber
floating structure. This airchamber structure
can be control well the wave transformation
and its dynamic behaviors by adjusting the
initial air depth in the air chamber. In
addition, it can reduce the tensile force acting
on the mooring line because the action of air
between the structure and the water surface
within the structure acts as a buffer (Fig. 2).
In the application of the present theory, the
second order air pressure variation in the
airchamber is newly formulated by using
Boyle’'s law, under the condition of the

adiabatic process of ideal gas.

2. THEORETICAL FORMULATION

2.1 Boundary condition

An arbitrary shaped floating structure is
considered here in the two-dimensional wave
flume of constant water depth h, as shown in
Fig. 1. Fictitious open boundaries Sy and
Sp at x= * b, where evanescent mode waves
can be neglected, divide the fluid domain R
into three regions, such as R*, R~ and R°.
The Cartesian coordinate system (x,z2) is
employed, in which x is measured horizontally
in the direction of reflected wave propagation
and z is measured vertically upward from
the stillwater level. Let 75, denote the
amplitude of the first order incident wave,
kY the wave number of the first order in
the fluid region of water depth £/, v the
outward normal direction. #(x (¢ is time)
the free surface elevation from stillwater
level, respectively.

With the assumption of the irrotational
motion of incompressible and inviscid fluid,
the fluid motion can be described with a
velocity potential @(x, z;£) which satisfies the
Laplace equation over the fluid domain R:

2 Wave Propagation
v -
X=-h K- K T S[ M

Fictitious ~s——_
Open Boundary

v Fictitious S.
Open Boundary 22—~

Soi| A
R
Fig. 1 Definition sketch
vi0=0, in R o))

Boundary conditions subjected to @ on each
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divided fluid region are:

07, 00 97 _ 0@ _ :
ot Yoz ox oz 0. on Sy @)

_QQ+_§_{(1Q>2+( w)z}m: Q on S,

ot ax Toz
(3)
22 —0, on S, @
(-5
{—g%+( aazt” —(;—xo)—a-;T")}m=0,
on S, (5

where g the acceleration of gravity, @ the
Bernoulli constant, x, and z, the initial
positions of the center of gravity, x,, 2, and
@, the horizontal (swaying), vertical (heaving)
and rotational (rolling) displacements of the
structure, respectively, ¢ = dz/ds, m=—dx/ds,
T=x x, 2=z,— z, S the surface line
on the structure, and x, and =z, the
coordinate on the surface of the structure.
Boundary conditions on the open boundaries
Sn and Sy are given by means of de-
termining analytically the velocity potentials
on the divided fluid regions R‘* and R‘7.
Now it is assumed that the velocity potential
O(x, z 1), the free surface elevation #(xd,
Bernoulli constant €@ and displacements of
the floating structure can be expanded into a
convergent power series with respect to a

small parameter e(7qkV):
mz6¢(1)eia1+82{¢(2)e2iar+¢(()2)}+,,, (6)
= e Vo 4 g2y Dplin .. 7

_39_

0=cQV +£2Q@ 4. ®
x,=caVe™+e{aPe®™+a{P}+- 9
z,=eBVe ™+ B Pt + 8P} +-- (10
0o=c0Ve™+e{wPe™+uw{P)+ (D

where ¢(§2), ad?, Béz’ and a;é” are the
second order velocity potential and amplitudes
of three motions which are independent of
time.

Substituting the perturbation parameters
(Egs. 6 ~11) into Egs. 1, 4 and Taylor's
expansion of Eq. 5 about the center of gravity
G( x,, zo) at the initial position, and
collecting the terms of same order of e, the
Laplace equation, seabed boundary condition
and surface boundary condition of the struc-
ture for the first and second orders can be
derived. Hence the combined water surface
boundary condition also can be obtained by
substituting the perturbation relations into
Taylor's expansion of Egs. 2 and 3 about the

stillwater level, collecting the terms of the same

@ from

each same order equation about & and &

These results are summarized as follows:

order of €, and eliminating 77“) and 7

First order:

viW=0 on R ' (12)
(¢)]

24— _rs®=0, on s, (13)
(§)]

—a—g—z——=0, on S, (14)

) —_ —
—ng—- =il L2V +mBV+(mx—2 2oV,

on S, (15
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Second order:

® time-dependent components

vi¢P=0,on R (16)

e (& RIS}

W m 2, (1)
7 ) d°¢
5 { r=5—+ 27 }, on S, (17

2)

29— —0,on S, (18)
2) — —

94 = =2i{ 2P +mB P +(mx—~ 2 2 @}

v
($)) 2 (D 2 (1)
2 2°¢ 2°¢
+ 2 ([ asz +”L. al/as )

_ B(Z) ’ 32¢(1)_ azqs(l)
2 dvds " ps?

(03] 1
_.w__(_a_%s_ +20'(md ) _ [B(l))

2
—_ —_ 62 )
+(& x+m z)—L—aVas

. _ a2,
—(mx—2¢ z)%—), on S, (19

® time-independent components

v24¥=0,0n R (20)
06¢? __ a0 (_ 3L 3%
0z~ g [ =zt 922 }
on S,’ (21)
(2) .
a‘;; =0, on S, (22)

a¢(§2) _ afkl) 6245(1) 62¢(1)
v T T2 (‘ 357 ™ 61/6‘5)

_Bﬁf’(

9% 22
z )

uds T gs2

on §; (23)

where 6L, 20, gY and w® are the
conjugate complex numbers of ¢“), a“),
BY and @ respectively, ¢ the angular fre-
quency, i=VY —1 and I'=d%/g.

Here ¢§? is out of discussion because
¢(§2) does not have any contribution to the
water pressure and free surface fluctuation up

to the second order.

The first order velocity potential ¢V in the
region R, which satisfies Egs. 12 ~ 14, is:

¢ M= kg G(e i/e“’x+B m, —i/e‘”x)Z(k M2y (24)

where B is the unknown corresponding to
the reflection coefficient, 4V the wave
number determined by the dispersion rela-
tionship o6%/g=kPtanh%Vh, and Z(kPz)=
coshk P(z+#)/ coshk Vh. Substitution of
Eq. 24 into Eq. 17 yields the second order
water surface boundary condition given by:

2)
3%2 “4.0P¢ (2);_

2_ g (D ) 7 _oipiy,
— 3g£§k(”~ko- z{i(eZzlz x+B(1)e 2ik ’)}

2 1)*
_ L3R ) f’; By (25)

Considering Eqgs. 16, 18 and 25, the second

(2)

order velocity potential ¢ in the region

R can be assumed as:

_40_
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¢ @ _ _k_gg B (Z)e —ikme(k (2)2)
+ia s(eZ{k"’x+B (l)ze —Zik(“x)Z(Zk (l)z)

. n
+ib.B (26)

40
where the term of ¢?* * presents the second

order velocity potential of the incident wave
component, well-known from a Stokes second

order wave theory, B the coefficient of the

second order free wave, which satisfies the
two-dimensional Sommerfeld radiation condi-
tion, and £® the wave number of second or-
der free wave. The coefficients a, & and
the dispersion relationship for the second
order free wave are obtained by substituting
Eq. 26 into Eq. 25.

__ 3gcosh2k Vh
gk (“‘Sinh 4k (l)h

(3[!2 k(l) 2
bS 4k(1)

Ar=kPtanhk Pk

The first and second order velocity potentials

in the region R ) can be obtained in the
similar way:

V= —f- Ve 2k V2) @

é (2 __ 7& [Pk “’xZ(k (2)2)
(28)

+ia J Ve Z(2k Vz)

where IV is the unknown corresponding to
the transmission coefficient, I® the coef-
ficient of the second order free wave. In Eq.

28, the term of I? satisfies the Sommerfeld
radiation condition.

_41_

The open boundary condition at x= £ & are
given by calculating the velocity potentials

and the corresponding normal derivatives of

the first and second orders, &:1.,, ,(,2-_3 by

36 Y/ay._ ., and 0¢ /oy, ., from Egs.
24, 26, 27 and 28.

Open boundary conditions at x=b

¢(1): kﬁ 6<ezk‘"b+B(l)e —z'k“)b)Z(k(l)z) (29)

I8)) : . (1 0 N
aéay :__lf(ez/e 7b_B(1)e —ik )b)Z(k(l)z) (303

(2) (2 i (1
p = BB e 2k V2) tia (7
{31)
_’_B(l):e _Zikmb)Z(Zk(l)Z)'f'l.bsB(])

me( b (2)2)

1ok (Z)B (2)
k“)

—2£ M, s(em‘“b_B (1)2e —2:&"’b)Z(2k (1):)

(32)
Open boundary conditions at x=-—0b
o) IV @,
¢ =—§—m;e’ Z(k"2) (33)
—ﬁ‘?—- —L e " zZ(k V2) (3!

@ . : g )
¢@= gIl e ML kD) +ia I Ve " Z(28 V)

ko
(35)
(2)1( )

lgk .

— ik ’bZ(k (2)2)

19k (1)a J(l)’e —ik“’bZ(Zk (1)2)
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2.2 Procedure of Numerical Calculation

First and second order velocity potentials at
an arbitrary point X on the boundary surface

of the closed fluid region R® can be
expressed by following integral equation:

000= [ (s )22 () 28X )4

(37)
G(r)= —71? log»

where 7 is the distance between the points X
and X, G(») a Green's function and s the
surface line on the boundary in the region R o

The boundary surface consists of the water
surféce Ss the seabed S, the structure
surface S, and the open boundaries Sg and
Sp at x= =5, as shown in Fig. 1. Eq. 37
can be solved by means of numerical
calculation using the obtained boundary
conditions, in which the boundary surfaces
Ss Su, Sw, S»and S, are discretized into
the finite numbers of small segments.
Integration is performed in the order of Sy
SOI: S[,, Soz and Ss.

Substitution the boundary conditions into
Eq. 37, the following set of simultaneous
equations is obtained for each order:

2 A (k)(¢ (k)) + ZB (k)(](k)) + %B’(l_k)(B (Ie))

A ‘ _
+2CP2aP+mBP+(mx~ 2 Do P}=DYP
(38)

where i=1,2,...,N and N is the total
number of segments on the whole boundary
surfaces and ; indicates the number of the
segment on the boundary. The coefficients
AP BP and C$ depend on the in-
tegration of Green’s function and its normal

_.42_

derivative, which can be evaluated numer-
ically or analytically. D_{ij}*{(1)} is given by
the velocity potential component of the first
order incident wave, and D2 is given by the
known functions such as ¢ on the bound-
ary surfaces S, S, and S, The values of
BW g, gM 40q W are obtained
from the first order solution. It should be
noted that Eq. 38 must be solved simul-
taneously with the equation of the motion of
the structure, in order to obtain the dis-
placements of the structure.

2.3 Equation of Motion

The equation of motion is constructed Wifh
the wave exciting force and reaction force of
the mooring lines against the motion of the
structure, that is:

d*,

M- 7 =P .+F, (39)
d%z, _

M 7 =P, +F, (40)

L oy (1)
dtz r 14

in which

P.=[ Peas (42)

P,= f Pmds’ (43)

Do B {(52) (3]
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where M is the mass of the structure, I the
inertia moment with respect to G(x,, z,),
the water density, P, and P, the horizontal
and vertical exciting forces, T, the moment
due to P, and P, with respect to G{x,,
z,), F,and F, the horizontal and vertical
resistant forces of on-offshore side mooring
lines, and M, the moment due to F, and
F, with respect to G(x,, z,).

Let the initial length of the offshore side
mooring line and the angle of the mooring
line to the seabed be m, and 6&,, and their
variation under wave action be J4dm, and
40,, respectively, then the reaction forces
Fa

and moment F,, and M, are ex-

pressed as follows:

F,.=F,cos8,—F ,cos8, (46)
F21=F,,s'm91-—FwSin92 (47)
Mu= F (2 ,cosf,+ ¢ ,sinf )sind,

+( 2 ,sinf,~ ¢ ,cos8,)cos B} (48)

—-F, (2 ,sin@,— ¢ ,cos6,)

where F, is the initial tensile force of the
offshore side mooring line, and K the spring
constant of the mooring line, £ ,= x,—# ,,

¢ ,=z,+h, 0,=0,+40, and F,=F +
Kim ,,.

The reaction forces and moment of the
onshore side mooring line can be determined
in the same manner, and therefore the total
reaction forces and moment of the mooring
lines are given by the sum of them. It is
assumed in this paper that the shape of the
floating structure and the mooring system are
symmetric with respect to z-axis, and that
the resistant forces of the mooring line obeys
Hook’s law. The first and second order e-

43 -

quations of swaying, heaving and rolling
motions can be derived by substituting Eqgs. 6
~11 into Taylor's expansions of Egs. 39-41
about its initial position. Arranging the re-
sultant equations by the order of ¢ the
following equation are obtained.

First order:

o Ma V= —pof¢“)1ds+Kx,,a“)
+K. AV K 0 w

—o?Mp W = —pafqﬂ(”mds-f-Kz_,,a(”
) (50)

K. BV HK 00

—0p M= —po‘fsgb(l)(;m—zﬂ)ds

+Kr,xa(l)+Kr,zﬁ“)+Kr.rw(1)
(51)

Second order:

® Time-dependent

Anly D _ @ __io
4o"Ma®= o [{1 C?1 ¢ %
¢(”w(”m}ds+[ R‘(DZ)] ‘p=x
(52)
_462MB(2)= _pﬁ{[ C(?)] m+_129'_

$WoWolas+[ RPY,_,
(83)

~46%0 @ = —pfs[ C®) (em—722)ds
(54)
+L RPY |,y
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® Time-independent
—X xa(Z) Kr,z 22)_1{,‘,0)((;2):
_ 2 10 () (D)
pfs[[ Co][+2¢*w m}ds .
(55)
+[ RET | pes
-K, vaf;Z)_Kz,zB(Z) K rw(Z)
— @ 38 (), ()
= pfs{[ cPl m—-2¢Pw !}ds (56)
+0 RP1 |-
eraz()Z) Kr,z §2)—Krrw¢(72')

=—pfs[ CPY (om— 22 )ds (57)

+[ REI |,

in which
[ c?] = 21'0¢‘”+71{(—a¢5_;2)2+(_65v&)2}

[¢)] )
+z'a{a (l)( 2 —a—%/— —m—a%-)

wf. 9L a¢“))
+B (In EY + /4 aS

+(xt +;m)—a%£)‘}} ‘

[ co =%“ a%s(l>iz+ a%jn{z}

[ R£2)] lp=x_z,r=Kp_za(?)+Kp,zﬂ(2)+Kp,rw(2)

~ 44 -

+_%_(Kp'ﬂa (l)h+Kp,zzﬂ(])~+Kp,nﬂ)(l)
+Kp_xza<n/g(n+Kp‘er“)w (&)

+K (l)a (1))

[ RE] lpmrar= 5Kyl ™’
+Kp.zzlﬂ (l)l 2 +Kp_ rrl w (l)l z
+Kﬂxz (1)3(1)+K /3(1)

+K 0 Pa?)

K. .=—2Kcos?0,—2fsin %6,

K..=K,=K,~K,.=0
Ky, =K, =—2Kk,cos "0, —2F b psin *6,
K, ,=—2Ksin*0—2f ,cos %9,
K,,= —2Kh%cos 0,—2f ,h’sin %0,
—2F ;m b pSin @y
Kin=K:0w=Kin=K:n=0
K..=—2 K] sind,(3sin’6,-2)/m,
K, .= [ Kl (h,cosf,sin20,
+2h ,sin @ ,c082605)/m,
K:u=05K,x

K., ..=—3[ K] sinf;cos 29,/m,

K, = —Kh,sin*0;—f ) ,cos ’0,
—[ K} hisin 36 ,/m,
+20 K1 hh,sinfycos 26,5/m,
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Kz,rszx.zr Eq 58:
K oz K x,2r First order
Kr.zr=2Kz,rr F(l)

L —— (l)fx+ﬂ“)fz+a) (l)fr (60

Second order

hy= 2 ,+ ¢ 5c0tf, o time-dependent component

kq: s 2‘_[ 2tan¢92 @
L =148 0 ®f L L] 6

K
fo=F,/m,
¢ time-independent component
[ K1 =K-F, .
FP o @ &) @ 1/po:
where the first and second order equations of K =@ fxtBo fataws frt [ Lo7] 1e2:

motion must be solved simultaneously with
Eq. 38 Hence the second order time- in which
independent motions of the structure can be 1 . . X
calculated using Egs. 55 ~57, associated with [L?] = T{a(l).fﬁ+ﬁ(l)-fu+w W}
the determined first order solution.
| +—%{a Wgyr 4 gy, Wyr
2.4 Tensile Force of Mooring Line

m,_
The tensile force F(# acting on the to e A
offshore side mooring line is evaluated with
Hook's law [ L2 = {le P o8 N tlo V1% )

F=Kdam, (58) +_%{a§kl)ﬂ(l)fxz+/95kl)a)(l)fzr

F may be expanded into power series of

(W
parameter ¢ in the similar way as the toia

velocity potential @:

f«=—cosf,
_ () iot | 2 (2) 26t 4 g (Dy 4 ...

F=F eFVe@+e (FPe™+F )+ (59) fo=— sing,
where F{? is the time-independent second f,=—14 ,sin@,— £ ,co80,
order tensile force.

Employing the same method used for the fw=sin 20,/m,
equation of motion, the tensile force for first

_ 2

and second orders is derived as follows from fz=cos “Gy/m,

_45_
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fo= —2£ yc080,+ ¢ ,sinf,

+(— £ yc080,+ ¢ ,sin,)%m,
Fe=—sinfycosf5/m,
fa=—(—2,c080,+ ¢ ,sinf,)cos0y/m,
Fr=(—2 5c080,+ ¢ ,sinf,)sinf,/m,

¢ ,=h,+t2z2,

3. APPLICATION TO AIR-CHAMBER
STRUCTURE

The theory developed in this paper is ap-
plied to the fully submerged air-chamber
structure as shown in Fig. 2. The combined
water surface boundary condition in the
airchamber can be derived easily from the
dynamic and kinematic boundary conditions,
including the variation of the air pressure in
the airchamber, by using the same procedure
as in the case of the stillwater surface
boundary S, On the other hand, the first and
second boundary conditions on the open
boundary, free water surface, seabed and
structure can be applied to the air-chamber
structure without any modifications.

- Air-Chamber
9,790°

Fig. 2 Definition sketch of air-chamber

structure

_46._

The time variation of the air volume
4V (D in the airchamber under wave action,
which causes the air pressure variation, is
given by:

AV, =V ~Vv®
=VAV., (63)

In Eq. 63, 4V, is given by the sum of V,
and V,, in which V, and V, the air
volume change by the water surface variation
in the airchamber (&) and motions of struc-
ture, respectively. V, the total air volume under
wave action, and V,(IO) the initial air volume.

The air pressure P(#) is assumed to be
expanded into power series of e¢.

P,=PW4epPe i"+52(P,(,2)e2"“+Pff,)+---
(64)

where Pf,O) is the initial air pressure, and
P ,(12)0 the time-independent air pressure of
second order.

The air pressure variation by 4V, can be
evaluated with Boyle’'s law:

— V(O) 4
— p® — p0) a _p®
P,=P, +4P,=P, {—(ﬁ—‘vo 1AV } P,

a a

(65)

in which, 4P, is the air pressure change and
y=1.4 when the air compression is the
adiabatic process of ideal gas.

Expanding Eq. 54 into Taylor's expansion
about the initial state yields:

av, \AS
AP,,-———}'PZ(IO)('—W)-F—% 7(1+7)("I"/75)') +ee-

(66)

The air pressure variation of the first and
second orders is obtained by means of the
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following procedure: 1)formulating V, and
V.. in Eq. 63 as the function of & x, z,
and 0, 2)expanding the result of 1) into
Taylor’'s expansion about the initial state;
3)substituting the result of 2)into Eq. 66;
4)substituting the perturbation relations into
the result of 3); and S)collecting the terms of
the same order of & Effect of air pressure
to the motion of structure can be evaluated in
the same way as in the case of the tensile
force acting on the mooring line.

4. RESULTS AND DISCUSSION

4.1 Water Surface

The nondimensional water surface profiles
7/, measured at x/L=0.113, */L=0 and
x/L=—0.113 above the structure in the case
of dyJ/h=0.11, d,/h=0.2, 2%./L=0.0143
and 2¢ ,/L=0.45, are plotted versus ¢ T in
Fig.3, in which L is the incident wavelength,
T the wave period, d, the submerged water
depth of structure’s crown, and 4, the initial
air depth in the airchamber (Fig. 2). Also, in
Fig. 3, the calculated values together with the
first and second order surface variation 7,
and 7, are presented. According to Fig. 3, the
second order component 7? becomes larger
with wave propagation (from Figs. 3a to
c)above the structure. This means that the
nonlinear wave-structure interaction grows
with wave propagation above the crown of
the structure. An abrupt change of the water
depth at the offshore side of the structure,
above which lots of wave energy is trans-
mitted, may enlarge the second order com-
ponent. The phase of the second order sur-
face profile is, in general, different from that
of the first order component, as shown in
Figs. 3a, b and c; thus, the total profile 7
depends largely on the phase lag between the
first and second orders. It is also found that

the amplitude of the first order component

2 is varied according to the location on the

structure. This arises from wave reflection
due to rapid change of water depth at the
onshore side of the structure.

2
1.5 -
7/ 71 NG
r N
N e, N e,
“eu 7 [ . . N> o
0.5 ]’7‘4 R

1st order - =~ 3
-1 zid'l',di', ...... STt
p O 1st+2nd i
order
1.5 Experimental
2 value ‘
14 2/4 34 1 44
(a)x/L=0.113
2 —
1.5 1storder - -~ g
° 2nd order seese-
1st+2nd
d d =
7// 7701"-\ Expg:lme:mlal ) ]
0.5 ~‘¢ value Zg,.
. fﬁ\ﬂ;\ o
. ol . 17 2
0.5 ..""""ﬂ.'—\s} L J,/ w}
11— IS8 A0
-1.5
-2
1/4 2/4 3/4 4T 4/4
(b)x/L=0
2 . :
st m |
- rder eccees
7 991 sdd —|
AN esmmee o [
0.5 .~ AN - aes _— "’.r"
0 .'._ U\“ WD\D £ '.“A _AZ".
‘ﬁm 7
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Nondimensional water surface profiles #/7,
at x/L=-0.975, x/L=-1.100, and x/L=
~1.225 in the onshore region of the structure
under the same wave conditions as Fig. 3 are

shown in Fig. 4. The amplitudes of the first
and second order components are seen to be
unchangeable. Hence, the second order val-
ues in the onshore region of the structure are
mainly dominated by those formed above the
structure. The total wave profile 7 has the
same characteristics as those in Fig. 3, in the
sense that the total wave profile 7 is largely
changed by the phase lag between the first
and second order components.

Appearance of the nonlinearity in the wave
profile due to the submerged moored air-
chamber floating structure is very similar to
that in the case of a fixed and submerged
breakwater (Yoshida et al., 1983). Although
the results are not presented graphically here,
it is proved that the effect of the initial air
pressure in the airchamber on the water
surface profile is not so significant. The
reason is that most of the wave energy is
transmitted on the upper fluid region of the
structure crown. Therefore, the nonlinearity
appearing in the water surface profile on the
onshore side of the structure seems to be
dominated largely by the submerged water
depth of the structure’s crown.

4.2 Motion of Floating Structure

The mooring line, which are made of chain,
have a very large spring constant, and they
are set vertically on the seabed in the
experiments. The vertical and rotational mo-
tions are very small due to the very high
resistant force of mooring lines, cbmpared to
the horizontal motion. Therefore, only the
horizontal motion is discussed here.

Fig. 5 shows the relationship between the
nondimensional horizontal motion x,/7, and
t/T. Figs. 5a and b show results of x./7,
for two different wave periods under the

same initial air pressure, while Figs. 5a and ¢
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present the results of x,/7, for two different
initial air pressure of d,/k under the same
wave period. The nonlinear time-dependent
horizontal motion in Fig. 5 is very small,
compared to the time-independent one given
by the dotted line. This comes from the very
high nonlinear resistant force of the mooring
lines and the large mass of the structure
against the horizontal motion, while the time-
independent component has no correlation with

the mass of the structure. On the other hand,

the linear horizontal motion ¢‘” becomes

large with the increment of wave period, as
shown in Figs. 5a and b. This enlarges the
nonlinear interaction for other linear motions
,8“) and a)“), as presented in Egs. 55-57.
Therefore, the time-independent motion may
increase with increasing wave period, as
shown in Figs. ba and b.

Comparing Figs. ba with ¢, it can be seen
that the time-independent component de-
creases with decreasing initial air pressure.
The linear horizontal motion increases with
an increment of the initial air pressure in the
airchamber, as the mass of the fluid moving
with the structure in the airchamber, which
acts as a resistant against the horizontal
motion, becomes smaller. Thus, it seems that
the time-independent component, as shown in
Figs. 5a and ¢, becomes large by an in-
crement of the nonlinear interaction between
the increasing linear horizontal motion a ‘¥
and other linear motions A" and other linear

1)

motions B(” and o', as mentioned ahove.
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4.3 Tensile Force of Mooring Line

Fig. 6 shows the time variations of the
computational and experimental values of the
tensile forces of offshore side mooring line
normalized by ogp,£ 3. Figs. 6a and b show
the results in the case of different wave
periods for the same initial air pressure.
Figures indicate that the time-dependent
component of second order shows larger
value than that in the horizontal motion
shown in Fig. 5. Although the tensile force
acting on the mooring line is caused by the
motion of the structure, the vertical motions
have direct effect on the tensile force, as
given in Eqs. 55 ~57, especially under the
vertical mooring condition. And the dynamic

2
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Fig. 6 Time variation of tensile force acting
on offshore side mooring line
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water pressure of the second order cor-
responding to the water surface profile 7, in
Fig. 3 gives rise to the nonlinear vertical
motion. Thus it seems that the time-
dependent tensile force is given by the ver-
tical motion of the structure. This becomes
larger with an increment of the incident wave
length, while the time-independent component
has the reverse tendency. The results of the
second order components are different from
those of the second order horizontal motion.
The total amplitude of the first and second
orders, however, can be seen to increase as
the wave length becomes longer.

5. CONCLUSION

In this study, the nonlinear theoretical
analysis, based on the frequency-domain
method, has been newly developed to evaluate
nonlinear characteristics of a submerged
moored floating structure under regular wave
train. Comparison between theory and ex-
periments has been made to illustrate the
validity of the present theory for the case of
the airchamber structure moored vertically.
Main conclusions obtained in this study are
summarized as follows: .

(1) The numerically calculated values are in
general in good agreement with experimental
ones, and the validity of the proposed theory
is confirmed.

(2) The amplitude of the nonlinear wave
grows very large by the nonlinear wave-

" structure interaction immediately after wave

propagation on the structure, and the total
wave profile of the first and second orders
depends largely on their phase lag.

(3) The contribution of the time-independent
component to the second order horizontal mo-
tion is predominant, while the contribution of
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the time-dependent component is very small.
The time-independent component tends to in-
crease with an increment of the wave period
and the initial air pressure in the airchamber.

(4) The contribution of the time-dependent
component to the second order tensile force is
larger than that of the horizontal motion,
which is caused by the vertical motion of
structure.  The time-dependent component
becomes larger with an increment of the in-
cident wave length, while the time-independent
component tend to decrease.
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