Fuzzy Pairwise β -continuous Mapping

Kuo-Duok Park*, Young-Bin Im**

ABSTRACT

In this paper, we define a (τ_i, τ_j) -fuzzy β -open set and a fuzzy pairwise fuzzy β -continuous mapping on fuzzy bitopological spaces and study some of their properties.

I. Introduction

The concept of fuzzy set was introduced by Zadeh in his classical paper[13]. Using the concept of a fuzzy set, Chang[4] introduced a fuzzy topological space. Since then various workers have contributed to the development of the theory. Kandil[5] introduced and studied a fuzzy bitopological space as a natural generalization of a fuzzy topological space. In [11], Sampath Kumar introduced and investigated a (τ_i, τ_j) -fuzzy semiopen $((\tau_i, \tau_j)$ -fuzzy semiclosed) set and a fuzzy pairwise semicontinuous mapping on fuzzy bitopological spaces. Also, he defined a (τ_i, τ_j) -fuzzy preopen $((\tau_i, \tau_j)$ -fuzzy preclosed) set and a fuzzy pairwise precontinuous mapping on fuzzy bitopological spaces and studied some of their basic properties.

In this paper, we first define a (τ_i, τ_j) -fuzzy β -open $((\tau_i, \tau_j)$ -fuzzy β -closed) set and a fuzzy pairwise fuzzy β -continuous mapping on fuzzy bitopological spaces and study some of their properties. We show that every (τ_i, τ_j) -fuzzy semiopen set is a (τ_i, τ_j) -fuzzy β -open set and every (τ_i, τ_j) -fuzzy preopen set is a (τ_i, τ_j) -fuzzy β -open set but the converses are not true in general. Any union (respectively intersection) of (τ_i, τ_j) -fuzzy β -open (respectively (τ_i, τ_j) -fuzzy β -closed)

II. Preliminaries

For definitions and results not explained in this paper, we refer to the papers[1, 4, 8, 12, 13] assuming them to be well known.

Let X, Y and Z be nonempty sets and I the unit interval [0, 1]. A fuzzy set of X is a mapping from X into I. The empty fuzzy set 0_X is the mapping from X into I which assumes only the value 0, and the set X is denoted by mapping 1x from X into I which takes the value 1 only. The union $\vee \mu_k$ (respectively intersection $\wedge \mu_k$) of a family $\{\mu_k | k \in \Lambda\}$, where Λ is an index set, of fuzzy sets of X is defined to be the mapping sup μ_k (respectively inf μ_k). A member μ of I^X is contained in a member ν of I^{χ} , denoted by $\mu \leq \nu$, if and only if $\mu(x) \le \nu(x)$ for each x in X. The complement μ^c of a fuzzy set μ of X is $1-\mu$, denoted by $(1-\mu)(x) = 1 - \mu(x)$ for each x in X. If μ is a fuzzy set of X and ν is a fuzzy set of Y then $\mu \times \nu$ is a fuzzy set of $X \times Y$, defined by $(\mu \times \nu)(x, y) = \min(\mu(x), \nu(y))$ for each (x, y) in $X \times Y[1]$.

sets is a (τ_i, τ_j) -fuzzy β -open (respectively (τ_i, τ_j) -fuzzy β -closed) set. We also show that every fuzzy pairwise semicontinuous mapping is a fuzzy pairwise β -continuous mapping and every fuzzy pairwise precontinuous mapping is a fuzzy pairwise β -continuous mapping. But the converses are not true in general.

^{*}Dept. of Mathematics, Dongguk University

^{**} Dept. of Mathematics, Seonam University

Let $f: X \to Y$ be a mapping. If μ is a fuzzy set of X, then $f(\mu)$ is a fuzzy set of Y defined by

$$f(\mu)(y) = \begin{cases} \sup\{\mu(x) \mid x \in f^{-1}(y)\} \text{ if } f^{-1}(y) \neq \emptyset \text{ for each } y \text{ in } Y, \\ 0 \text{ otherwise.} \end{cases}$$

If ν is a fuzzy set of Y, then $f^{-1}(\nu)$ is a fuzzy set of X defined by $f^{-1}(\nu)(x) = \nu(f(x))$ for each x in X.

A subfamily τ of I^X is called a fuzzy topology on X [4] if

- (i) 0_X and 1_X belong to τ ,
- (ii) any union of members of τ is in τ , and
- (iii) a finite intersection of members of τ is in τ .

A member of τ is called τ -fuzzy open $[\tau - fo]$ set of X and its complement is called τ -fuzzy closed $[\tau - fc]$ set. For a fuzzy set μ of X, the τ -closure $[\tau$ -Cl] and the τ -interior $[\tau$ -Int] are defined, respectively as follows.

$$\tau$$
-Cl μ = inf { $\nu \mid \nu \ge \mu, \nu^c \in \tau$ } and τ -Int μ = sup { $\nu \mid \nu \le \mu, \nu \in \tau$ }.

A system (X, τ_1, τ_2) consisting of a set X with two fuzzy topologies τ_1 and τ_2 on X is called a fuzzy bitoplogical space X [fbts X][5]. Throughout this paper the indices i, j take values in $\{1, 2\}$ and $i \neq j$, i = j gives the known results in fuzzy topological spaces.

Let μ be a fuzzy set of a *fbts X*. Then μ is called a (τ_i, τ_j) -fuzzy semiopen $[(\tau_i, \tau_j)$ -fso] set of X, if there exists a ν in τ_i such that $\nu \leq \mu \leq \tau_j$ -Cl ν . The complement of a (τ_i, τ_j) -fso set is called a (τ_i, τ_j) -fuzzy semiclosed $[(\tau_i, \tau_j)$ -fsc] set[11].

Let $f:(X, \tau_1, \tau_2) \rightarrow (Y, \eta_1, \eta_2)$ be a mapping. Then f is called a fuzzy pairwise semicontinuous [fpsc] mapping, if $f^{-1}(\nu)$ is a (τ_i, τ_j) -fso set of X for each η_i -fo set ν of Y.

Let μ be a fuzzy set of a *fbts X*. Then μ is called a (τ_i, τ_j) -fuzzy preopen $[(\tau_i, \tau_j)$ -fpo] (respectively (τ_i, τ_j) -fuzzy preclosed $[(\tau_i, \tau_j)$ -fpc]) set of X, if $\mu \le \tau_i$ -Int $(\tau_j$ -Cl μ) (respectively τ_i -Cl $(\tau_j$ -Int μ) $\le \mu$).

Let $f:(X, \tau_1, \tau_2) \rightarrow (Y, \eta_1, \eta_2)$ be a mapping. Then f is called a fuzzy pairwise precontinuous [fppc] map-

ping, if $f^{-1}(\nu)$ is a (τ_i, τ_j) -fpo set of X for each η_i -fo set ν of Y[10].

II. (τ_i, τ_j) -fuzzy β -open sets, fuzzy pairwise β -continuous mappings

Now, we define a (τ_i, τ_j) -fuzzy β -open (respectively (τ_i, τ_j) -fuzzy β -closed) set and a fuzzy pairwise β -continuous mapping on fuzzy bitopological spaces and study some of their properties.

Definition 3.1 Let μ a fuzzy set of a *fbts X*. Then μ is called

- (i) a (τ_i, τ_j) -fuzzy β -open $[(\tau_i, \tau_j)$ - $f\beta o]$ set of X if $\mu \le \tau_j$ -Cl $(\tau_i$ -Int $(\tau_j$ -Cl $\mu)$,
- (ii) a (τ_i, τ_j) -fuzzy β -closed $[(\tau_i, \tau_j)$ - $f\beta c]$ set of X if τ_j -Int $(\tau_i$ -Cl $(\tau_j$ -Int μ)) $\leq \mu$.

From the above definition it is clear that every (τ_i, τ_j) -fso (respectively (τ_i, τ_j) -fsc) set is a (τ_i, τ_j) - $f\beta o$ (respectively (τ_i, τ_j) - $f\beta c$) set, and every (τ_i, τ_j) - $f\beta o$ (respectively (τ_i, τ_j) - $f\beta c$) set is a (τ_i, τ_j) - $f\beta o$ (respectively (τ_i, τ_j) - $f\beta c$) set. But the converse are not true in Example 3.2.

Example 3.2 Let μ and ν be fuzzy sets of $X = \{a, b\}$ defined as follows;

$$\mu(a) = 0.5$$
, $\mu(b) = 0.6$, $\nu(a) = 0.5$, $\nu(b) = 0.3$.

Consider fuzzy topologies $\tau_1 = \{0_X, \mu, 1_X\}$ and $\tau_2 = \{0_X, \nu, 1_X\}$. Then every fuzzy set of X is a (τ_i, τ_j) - $f\beta o$ (respectively (τ_i, τ_j) - $f\beta c$) set, but ν , μ^c are not (τ_i, τ_j) -fs o sets and μ , ν^c are not (τ_i, τ_j) -fs sets. Also, ν^c is not a (τ_i, τ_j) -fp set and ν is not a (τ_i, τ_j) -fp set.

Theorem 3.3 (i) Any union of (τ_i, τ_j) - $f\beta o$ sets is a (τ_i, τ_j) - $f\beta o$ set.

(ii) Any intersection of (τ_i, τ_j) - $f\beta c$ sets is a (τ_i, τ_j) - $f\beta c$ set.

Proof. We prove (i) for (τ_i, τ_j) - $f\beta o$ sets, the other proof is similar. Let $\{\mu_k\}$ be a collection of (τ_i, τ_j) - $f\beta o$ sets of a $fbts\ X$. Then $\mu_k \le \tau_j$ -Cl $(\tau_i$ -Int $(\tau_j$ -Cl $\mu_k)$) for each k, and by Lemma 3. 1 of [1], we have

 $\vee \mu_k \leq \vee (\tau_j \text{-Cl } (\tau_i \text{-Int } (\tau_j \text{-Cl } \mu_k))) \leq \tau_j \text{-Cl } (\tau_i \text{-Int } (\tau_j \text{-Cl } (\vee \mu_k))).$

This show that $\vee \mu_k$ is a (τ_i, τ_i) - $f\beta o$ set.

It is clear that the intersection (respectively union) of any two (τ_i, τ_j) - $f\beta o$ (respectively (τ_i, τ_j) - $f\beta c$) sets need not be a (τ_i, τ_j) - $f\beta o$ (respectively (τ_i, τ_j) - $f\beta c$) set. Even the intersection (respectively union) of a (τ_i, τ_j) - $f\beta o$ (respectively (τ_i, τ_j) - $f\beta c$) set with a τ_i -fo (respectively τ_i -fc) set may fail to be a (τ_i, τ_j) - $f\beta o$ (respectively (τ_i, τ_j) - $f\beta c$) set.

Example 3.4 Let μ and ν be fuzzy sets of $X = \{a, b\}$ defined as follows;

$$\mu(a) = 0.1, \quad \mu(b) = 0.8,$$

 $\nu(a) = 0.8, \quad \nu(b) = 0.3.$

Let $\tau_1 = \{0_X, \mu, 1_X\}$ and $\tau_2 = \{0_X, \nu, 1_X\}$ be fuzzy topologies on X. Then μ and ν are (τ_i, τ_j) - $f\beta o$ sets, but $\mu \wedge \nu$ is not a (τ_i, τ_j) - $f\beta o$ set and $\mu^c \vee \nu^c$ is not a (τ_i, τ_j) - $f\beta c$ set of fbts X.

Theorem 3.5 If μ is both a (τ_i, τ_j) - $f\beta o$ set and a (τ_j, τ_i) -fsc set of a fbts X, then μ is a (τ_i, τ_j) -fso set.

Proof. Since μ is a (τ_i, τ_j) - $f\beta o$ set, $\mu \le \tau_j$ -Cl $(\tau_i$ -Int $(\tau_j$ -Cl μ)). But μ is a (τ_j, τ_i) -fsc set, hence τ_i -Int $(\tau_j$ -Cl μ) $\le \mu$. Thus τ_i -Int $(\tau_j$ -Cl μ) $\le \mu \le \tau_j$ -Cl $(\tau_i$ -Int $(\tau_j$ -Cl μ). Hence μ is a (τ_i, τ_j) -fso set.

Corollary 3.6 If μ is both a (τ_i, τ_j) - $f\beta c$ set and a (τ_j, τ_i) -fso set of a fbts X, then μ is a (τ_i, τ_j) -fsc set.

Proof. Since μ is a (τ_i, τ_j) - $f\beta c$ set, τ_j -Int $(\tau_i$ -Cl $(\tau_j$ -Int μ)) $\leq \mu$. But μ is a (τ_j, τ_i) -fso set, hence $\mu \leq \tau_i$ -Cl $(\tau_j$ -Int μ)). Thus τ_j -Int $(\tau_i$ -Cl $(\tau_j$ -Int μ)) $\leq \mu \leq \tau_i$ -Cl $(\tau_j$ -Int μ). Hence μ is a (τ_i, τ_j) -fsc set.

Theorem 3.7 Let (X, τ_1, τ_2) and (Y, η_1, η_2) be fbts's such that X is product related to Y[1]. Then the product $\mu \times \nu$ of a (τ_i, τ_j) -f\u03b30 set μ of X and a (η_i, η_j) -f\u03b30 set ν of Y is a (σ_i, σ_j) -f\u03b30 set in the fuzzy product bitopological space $(X \times Y, \sigma_1, \sigma_2)$, where σ_k is the fuzzy product topology[12] generated by τ_k and η_k (k = 1, 2).

Proof. Since μ is a (τ_i, τ_j) - $f\beta o$ set of X and ν is a (η_i, η_j) - $f\beta o$ set of Y, $\mu \le \tau_j$ -Cl $(\tau_i$ -Int $(\tau_j$ -Cl $\mu)$) and $\nu \le \eta_j$ -Cl $(\eta_i$ -Int $(\eta_j$ -Cl $\nu)$). Then, by Theorem 3.10 of [1], we have

$$\mu \times \nu \le \tau_j$$
-Cl $(\tau_i$ -Int $(\tau_j$ -Cl $\mu)$) $\times \eta_j$ -Cl $(\eta_i$ -Int $(\eta_j$ -Cl $\nu)$)
$$= \sigma_i$$
-Cl $(\sigma_i$ -Int $(\sigma_i$ -Cl $(\mu \times \nu)$)).

Thus $\mu \times \nu$ is a (σ_i, σ_j) - $f\beta o$ set.

Definition 3.8 Let $f:(X, \tau_1, \tau_2) \rightarrow (Y, \eta_1, \eta_2)$ be a mapping. Then f is called a fuzzy pairwise β -continuous $[fp\beta c]$ mapping, if $f^{-1}(v)$ is a (τ_i, τ_j) - $f\beta o$ set of a X for each η_i -fo set of Y.

From the above definition it is clear that every fpsc mapping is a $fp\beta c$ mapping, and every fppc mapping is a $fp\beta c$ mapping. But the converses are not true in Example 3.9.

Example 3.9 Let μ and ν be fuzzy sets of X in Example 3.2. Consider fuzzy topologies $\tau_1 = \{0_X, \mu, 1_X\}$, $\tau_2 = \{0_X, \nu, 1_X\}$, $\eta_1 = \{0_X, \mu, \nu, \mu^c, \nu^c, 1_X\}$ and $\eta_2 = \{0_X, \nu, 1_X\}$ and the identity mapping $i_X : (X, \tau_1, \tau_2) \rightarrow (X, \eta_1, \eta_2)$. Then i_X is neither a fpsc mapping nor a fppc mapping, but i_X is a $fp\beta c$ mapping.

The following theorem provides several characterization of $fp\beta c$ mappings.

Theorem 3.10 Let $f:(X, \tau_1, \tau_2) \rightarrow (Y, \eta_1, \eta_2)$ be a mapping. Then the following statements are pairwise equivalent:

- (i) f is a $fp\beta c$ mapping.
- (ii) The inverse image of each η_i -fc set of Y is a (τ_i, τ_j) -f βc set of X.

(iii) τ_{i} -Int $(\tau_{i}$ -Cl $(\tau_{i}$ -Int $(f^{-1}(\nu)))) \le f^{-1}(\eta_{i}$ -Cl $\nu)$ for each fuzzy set ν of X.

(iv) $f(\tau_j$ -Int $(\tau_i$ -Cl $(\tau_j$ -Int $\mu)$)) $\leq \eta_i$ -Cl $(f(\mu))$ for each fuzzy set μ of X.

Proof. (i) implies (ii): Let δ be a η_i -fc set of Y. Then δ^c is a η_i -fo set of Y. Thus $f^{-1}(\delta^c)$ is a (τ_i, τ_j) - $f\beta o$ set of X. But $f^{-1}(\delta^c) = (f^{-1}(\delta))^c$. Therefore $f^{-1}(\delta)$ is a (τ_i, τ_j) - $f\beta c$ set of X.

(ii) implies (iii): Let ν be any fuzzy set of Y. Then $f^{-1}(\eta_i\text{-Cl }\nu)$ is a (τ_i, τ_j) - $f\beta c$ set of X. Hence $f^{-1}(\eta_i\text{-Cl }\nu) \ge \tau_j$ -Int $(\tau_i\text{-Cl }(\tau_j\text{-Int }(f^{-1}(\eta_i\text{-Cl }\nu))))$.

 $\geq \tau_i$ -Int $(\tau_i$ -Cl $(\tau_i$ -Int $(f^{-1}(\nu)))$.

(iii) implies (iv): Let μ be any fuzzy set of X. Then, by (iii), we have

 τ_i -Int $(\tau_i$ -Cl $(\tau_i$ -Int $f^{-1}(f(\mu)))) \le f^{-1}(\eta_i$ -Cl $(f(\mu)))$.

Hence $f(\tau_i$ -Int $(\tau_i$ -Cl $(\tau_i$ -Int $\mu))) \le \eta_i$ -Cl $(f(\mu))$.

(iv) implies (i): Let λ be a η_i -fo set of Y. Then λ^c is a η_i -fc set. Thus

 $f(\tau_{j}\text{-Int }(\tau_{i}\text{-Cl }(\tau_{j}\text{-Int }(f^{-1}(\lambda^{c}))))) \leq \eta_{i}\text{-Cl }(f(f^{-1}(\lambda^{c})))$ $\leq \eta_{i}\text{-Cl }(\lambda^{c}) = \lambda^{c}.$

So τ_j . Int $(\tau_i$. Cl $(\tau_j$. Int $f^{-1}(\lambda^c))) \le f^{-1}(\lambda^c)$, that is, $f^{-1}(\lambda^c)$ is a (τ_i, τ_j) - $f\beta c$ set of X. But $f^{-1}(\lambda^c) = f^{-1}(\lambda))^c$. Therefore $f^{-1}(\lambda)$ is a (τ_i, τ_j) - $f\beta o$ set of X and consequently, f is a $fp\beta c$ mapping.

Theorem 3.11 Let (X_1, τ_1, τ_2) , $(X_2, \omega_1, \omega_2)$, (Y_1, η_1, η_2) and $(Y_2, \sigma_1, \sigma_2)$ be fbts's such that X_1 is product related to $X_2[1]$. Then the product $f_1 \times f_2 : (X_1 \times X_2, \theta_1, \theta_2) \rightarrow (Y_1 \times Y_2, \rho_1, \rho_2)$, where θ_k (respectively ρ_k) is the fuzzy product topology generated by τ_k and ω_k (respectively η_k and ρ_k) (k = 1, 2), of $fp\beta c$ mappings $f_1 : (X_1, \tau_1, \tau_2) \rightarrow (Y_1, \eta_1, \eta_2)$ and $f_2 : (X_2, \omega_1, \omega_2) \rightarrow (Y_2, \sigma_1, \sigma_2)$, is a $fp\beta c$ mapping.

Proof. For convenience, we denote $\lambda = \bigvee_{m,n} (\mu_m \times \nu_n)$, where μ_m 's are η_i -fo sets of Y_1 and ν_n 's are σ_i -fo sets

of Y_2 . Then λ is a ρ_i -fo set of $Y_1 \times Y_2$. By Lemma 2. 1 and 2.3 of [1], we have

$$(f_1 \times f_2)^{-1}(\lambda) = \bigvee_{m, n} ((f_1 \times f_2)^{-1} (\mu_m \times \nu_n))$$

= $\bigvee_{m, n} (f_1^{-1} (\mu_m) \times f_2^{-1} (\nu_n)).$

Since f_1 and f_2 are $fp\beta c$ mapping, $f_1^{-1}(\mu_m)$'s are (τ_i, τ_j) - $f\beta o$ sets of X_1 and $f_2^{-1}(\nu_m)$'s are (ω_i, ω_j) - $f\beta o$ sets of X_2 . By Theorem 3.3 and 3.7, it follows that $(f_1 \times f_2)^{-1}(\lambda)$ is a (θ_i, θ_j) - $f\beta o$ set. Therefore $f_1 \times f_2$ is a $fp\beta c$ mapping.

Theorem 3.12 Let (X, τ_1, τ_2) , $(X_1, \eta_1^{(1)}, \eta_2^{(1)})$ and $(X_2, \eta_1^{(2)}, \eta_2^{(2)})$ be *fbts*'s and $\pi_k: (X_1 \times X_2, \theta_1, \theta_2) \rightarrow (X_k, \eta_1^{(k)}, \eta_2^{(k)})$ (k = 1, 2) be the projections. If $f: X \rightarrow X_1 \times X_2$ is a $fp\beta c$ mapping, then so is $\pi_k \circ f$.

Proof. For a fuzzy open set μ of X_k , we have $(\pi_k \circ f)^{-1}(\mu) = f^{-1}(\pi_k^{-1}(\mu))$. Since π_k is fpc and f is $fp\beta c$, $(\pi_k \circ f)^{-1}(\mu)$ is a (τ_i, τ_j) - $f\beta o$ set of X. Hence $\pi_k \circ f$ is a $fp\beta c$ mapping.

Theorem 3.13 Let X_1 and X_2 be fbts's such that X_1 is product related to X_2 and let $f:(X_1, \tau_1, \tau_2) \rightarrow (X_2, \eta_1, \eta_2)$ be a mapping. If the graph mapping $g:(X_1, \tau_1, \tau_2) \rightarrow (X_1 \times X_2, \theta_1, \theta_2)$ of f defined by g(x) = (x, f(x)) is a $fp \beta c$ mapping, then f is a $fp \beta c$ mapping.

Proof. Let ν be a η_i -fo set of X_2 . Then by Lemma 2.4 of [1] we have $f^{-1}(\nu) = 1 \wedge f^{-1}(\nu) = g^{-1}(1 \times \nu)$. Since g is a $fp\beta c$ mapping and $1 \times \nu$ is a θ_i -fo set of $X_1 \times X_2$, $f^{-1}(\nu)$ is a (τ_i, τ_j) - $f\beta o$ set of X_1 . Hence f is a $fp\beta c$ mapping.

But the converse of above theorem is not true in Example 3.14.

Example 3.14 Let μ and ν be fuzzy sets of X in Example 3.4. Consider fuzzy topologies $\tau_1 = \{0_X, \mu, 1_X\}$, $\tau_2 = \{0_X, \nu, 1_X\}$, $\eta_1 = \{0_X, \nu, 1_X\}$ and $\eta_2 = \{0_X, \mu^c, 1_X\}$ and the identity mapping $i_X: (X, \tau_1, \tau_2) \rightarrow (X, \eta_1, \eta_2)$. Then i_X is a $fp\beta c$ mapping, but its graph mapping g is not a $fp\beta c$ mapping. Now, $\mu \times \nu$ is a $(\theta_i, \theta_j) - fo$ set

of the fuzzy product space $(X \times X, \theta_1, \theta_2)$, where θ_k is the fuzzy product topology generated by τ_k and η_k (k = 1, 2). But $g^{-1}(\mu \times \nu) = \mu \wedge i_X^{-1}(\nu) = \mu \wedge \nu$ is not a (τ_i, τ_i) - $f\beta o$ set of X.

References

- K. K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82 (1981), 14-32.
- A. S. Bin Shahna, On fuzzy strong semi-continuity and fuzzy pre-continuity, Fuzzy Sets and Systems, 44 (1991), 303-308.
- 3. _____, Mappings in fuzzy topological spaces, Fuzzy Sets and Systems, 61 (1994), 209-213.
- 4. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- A. Kandil, Biproximities and fuzzy bitopological spaces, Simon Stevin, 63 (1989), 45-66.
- J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13 (1963), 71-89.
- A. S. Mashhour, M. H. Ghanim and M. A. Fath Alla, On fuzzy non-continuous mappings, Bull. Cal. Math. Soc., 78 (1986), 57-69.
- P. M. Pu and Y. M. Liu, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moor-Smith convergence, J. Math. Anal. Appl., 76 (1980), 571-599.
- 9. _____, Fuzzy topology II. Product and quotient spaces, J. Math. Anal. Appl., 77 (1980), 20-37.
- S. Sampath Kumar, On fuzzy pairwise α-continuity and fuzzy pairwise pre-continuity, Fuzzy sets and Systems, 62 (1994), 231-238.
- 11. _____, Semi-open sets, semi-continuity and semi-open mappings in fuzzy bitoplogical spaces, Fuzzy Sets and Systems, 64 (1994), 421-426.
- C. K. Wong, Fuzzy topology: Product and quotient theorems, J. Math. Anal. Appl., 45 (1974), 512-521.
- L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353.

박 거 덕(Kuo-Duok Park) 정회원 1979년 3월~현재:동국대학교 이 과대학 수학과 교수

임 영 빈(Young-Bin Im) 정회원 1994년 3월~현재:서남대학교 수 학과 전임강사