Design of a Sliding Mode Controller with
Self-tuning Boundary Layer
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ABSTRACT

Sliding mode controller(SMC) is a simple but powerful nonlinear controller, because it guarantees the stability
and the robustness. However, it leads to the high frequency chattering of the control input. Although the phenom-
enon can be avoided by introdﬁcing a thin boundary layer to the sliding surface, the method results in a steady
state error proportional to the boundary layer thickness.

In this paper, we proposed a new sliding mode controller with self-tuning the thickness of a boundary layer. It
uses a fuzzy rule base for tuning the thickness of a boundary layer. That is, the thickness is increased to some de-
gree to reject a discontinuous control input at the initial state and then it is decreased as the states approaches to
the steady states for improving the tracking performance. In order to assure the control performance, we

performed the computer simulation using an inverted pendulum system as a controlled plant.
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I. Introduction Sliding mode controlle{(SMC) is a powerful nonlinear
controlier. It has been used for the control of imprecise
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any instant from one to another member, according
to continuous functions of the state. It is based on the
control law with a sliding regime that not only is
independent of changes in the plant parameters and
the external disturbances but also has the property of
the reduction of a system order [1]. While in the
sliding mode, accordingly, this control algorithm
guarantees the stability and the robustness in itself.
However, it has several drawbacks. One of them is
the high frequency chattering of the control input.
The chattering phenomenon is generally undesirable
in practice, because it involves extremely high control
activity, and further it may excite high frequency
dynamics neglected in the course of modeling [2].
Many approaches that alleviate this chattering
phenomenon has been proposed. In particular, the
chattering magnitude can be alleviated by an
equivalent control input. Furthermore, the phenom-
enon can be avoided by introducing the thin bound-
ary layer to a sliding surface. This method called the
boundary layer approach generates the continuous
control input. In consequence, the method can elimin-
ate the chattering by smoothing out the control dis-
continuity in a thin boundary layer neighboring the
switching surface. Unfortunately the boundary layer
method leads to a steady state error, and the error
increases with the extension of a boundary layer
thickness [2][3].

Since L. Zadeh had introduced the fuzzy set theory
in 19635, this theory has been applied to many areas.
Fuzzy control has emerged as one of the most active
and fruitful areas for research in the application of
fuzzy set theory. Fuzzy controller has been success-
fully applied to many plants that are mathematically
poorly understood. In recent, the fuzzy logic theory in
the control areas is used to improve the overall per-
formance of conventional control algorithms such as
PID control, adaptive control, neuro control, and so
on. Furthermore, it has been used in many self-tuning
techniques like the adjustment of several control

parameters of a conventional PID controller.

In this paper, we proposed new sliding mode con-
troller with self-tuning boundary layer thickness. The
controller uses a fuzzy rule base to tune the varying
boundary layer thickness. That is, the thickness is
increased to some degree to reject of a discontinuous
control input at the initial state and then to improve
the tracking performance, it is decreased as the states
approaches the steady state. As a result, a sliding
mode controller with self-tuning boundary layer
thickness makes the control input continuous as well
as greatly decreases the steady state error. To assure
the control performance, we performed the computer
simulation using an inverted pendulum system as a
controlled plant.

In Section II, we give a short review of the sliding
mode control. We explain in detail the boundary
layer method and the self-tuning boundary layer
thickness that is the heart of our study in Section II.
Also we described the results of a computer simu-
lation using the proposed algorithm in Section IV,
which demonstrates the improved control perform-

ance. Finally conclusions are followed in Section V.
II. Sliding Mode Control

The central idea of SMC is switching to a different
structure at each side of a given switching surface. So,
originally this algorithm is called the variable structure
control (VSC). The term SMC is used for emphasizing
the importance of the sliding mode or the sliding
regime [5]. The salient feature of VSC is that the
sliding mode occurs on the switching surface and
while in this mode the system remains insensitive to
parameter uncertainties and external disturbances [6].
Hence, SMC guarantees the stability and the robust-
ness in itself. Recently the objectives of SMC has been
greatly extended to stabilize other control algorithms
that are difficult to prove the stability.

General classes of nonlinear dynamic systems can

be transformed into the following class [2].
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P=f(x, D+ ul®)+d@® 1)

In this paper, we use the second order system for sim-

plicity as follows
EO=f,D+ul)+d@), (2)

where x =[x, x]7 is the state vector, and d(#) and «
(#) are the disturbance and the control input, respect-
ively. The function f(x, #) (in general nonlinear) is
not exactly known, but the extent of the imprecision
on f(x, t) is upper bounded by a known continuous
function of x. Similarly, the disturbance & (#) is

bounded by a known continuous function of x,

[4f(x, DI <Fx, )

ld®)] < Dix, B, ®
where the model uncertainty 4 f (x, #) is expressed as
follows;

AF D= Ffx, D—F(x D), @

where f (x, £) represents the estimation of f (x, 2).
Let ¢ (¢) be the tracking error of a state x.

e@=x0{)—x0). &)

Furthermore, let us define a surface s(f) in the

state-space R? by the scalar equation s (x, {) =0, where
d .
s(x, t)==(-dT +e®)=e®)+2re®, (6)

and A is a strictly positive constant and the surface s
(x, =0 is called the sliding surface. Then the control
problem is for the state x to track the desired state x4
# even under the model uncertainties and the
disturbances. The problem of tracking a 2-dimensional
vector x4(#) can in effect be replaced by a first-order
stabilization problem in s. That is, the tracking con-

trol is to place the error s(#) on the sliding surface.

The control input is made to satisfy the following

sliding condition,

1 da .
3 @ [s2(x, Dl < nlsl,n=0. @)

Let the control input be

u=u—K(x, t)sgn(s) ®
| for s>0
sen(s)= { -1 for s0. ©)

From the sliding condition, we get
sS=s(fx, ) +u+d—xs0)+1ré)<nlsl. (10)

that is, in order to satisfy above sliding mode, despite
uncertainties on the dynamics f(x, f) and the
disturbances d (#), K has to satisfy the following con-
dition

Kx,)=Fx,HD+D(x, ) +n. an

In equation (8), an_ equivalent control law u is
computed by (i.e., f=f, d =0) as follows

z2=5é,,(t)—f(x, t)—2ie. (12)

u# is the nominal compensation term that can be
interpreted as our best estimate, and plays the import-
ant role of decreasing a chattering amplitude. Namely,
the chattering magnitude of a control input is reduced
as much as a prior knowledge of the function f(x, #).

By choosing K to be large enough so an equation
(11) is satisfied, sliding condition is proved. The con-
trol discontinuity K across s=0 increases with the
extent of parameter uncertainties and disturbances.
As we explained before, SMC results in chattering
due to Ksgn(s). The chattering phenomenon of a con-
trol input means high frequency oscillation with a cer-

tain magnitude, which is undesirable in practice.
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. Continuous Control Law with Self-
tuning Boundary Layer

3.1 Boundary layer Method for Continuous Control
Law

Good performance of SMC is obtained at the price
of extremely high control activity. And in order to
compensate the effect of modeling imprecision and of
disturbances, the control law has to be discontinuous
across the sliding surface. Since the implementation of
associated control switchings is necessarily imperfect
due to the presence of delays and hysteresis in
switchings, this causes the trajectory to chatter along
the sliding surface. So, a rapid time-varying control
input signal will be accompanied. The chattering
phenomenon is undesirable in practice, because it
implies extremely high control activity, and further
may excile unmodelled high frequency dynamics.
Therefore the discontinuous control law #(2) must be
suitably smoothed out. To avoid this undesirable
phenomenon, some researchers proposed the so-called
the boundary layer method that generates a continu-
ous control law in place of a discontinuous one. In
this method, the saturation function is used instead of
the sign function for a conventional sliding mode con-
trol. As a result, the control law (8) is changed to fol-
lowing equations (13) and (14).

u=u—K(x, t)sat(%) (13)
S
sat(?;:‘)——- o for |sl <@ (14

sgn(>)  for Isl(@,
where @ represents the boundary layer thickness that
is well described in Fig. 1. That is, the discontinuity
of the control law is smoothed out in a thin boundary
layer B(?) neighboring the sliding surface (Fig. 1).

B)={x, Isx;0)| <d},d )0 15

At the outside of the boundary layer a control

input #(¢) is chosen as before, and at its inside a con-
trol input %(¢#) is interpolated as equation (13).

The boundary layer width, here, € is introduced,
and we can see the fact that it represents the maxi-
mum value of a tracking error from the followings.

The limitations on s can be immediately translated
into the limitations on the tracking error vector x,,
that is,

[s()] <@,— x| <¢, (16)
where

b
D0, e= FEe an

By definition of a switching surface, a tracking

error %, is obtained from s through a sequence of

first-order filters as shown in Fig. 3, where 1)=—a,‘-1; is

the Laplace variable. Let v, be the output of the first

filter as follows
_ [ —~Alt~1)
v (t)_j e s dr (18)
o
From |s| <&, we obtain the following.

o, ()] <@ j;e"("')S(t)dr=% (l—e‘“)s%
19)

e
h
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\

Fig. 1. The boundary layer with thickness @ .
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Fig. 2. The relation between the control input and the
sliding surface.
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Fig. 3. The sequence of first-order filters for computing
bounds on x,.

We can apply the reasoning of a equation (19) to
the second filter, and so on, until v,_; =x,. Then we

have the following result.

=g (20)

4
|x¢| =~ ln_l

O

From the above result, the more the boundary
layer thickness increases, the more the tracking pre-
cision degrades. Further the more the boundary layer
thickness decreases, the more the chattering possi-
bility increases. Thus an control law %(?) requires the
trade-off between the tracking performance and the

chattering phenomenon.

3.2 Fuzzy Logic-based Self-tuning Boundary Layer
In this section, we find the method that the varying
boundary layer thickness is automatically adjusted
without the chattering phenomenon. Here, we use the
fuzzy logic that is much closer in spirit to human
thinking and natural language than the traditional

logic systems.

Fuzzy rules for the self-tuning of a varying bound-

ary layer thickness are as follows
Ri:eis A; and 6 is B;, then® is C;, i=1, 2,1,

where Ri is the i-th rule, % is the number of rules, and
e, ¢, and @ are linguistic variables representing two
state variables and one tuning variable, respectively;
E, E,-, and C~, are linguistic values of the linguistic
variables e, é, and @, respectively.

Now these rules have to be inferred by an proper
reasoning method. Among several reasoning methods,
we use Mamdani’s MIN operation that is the most
common method. The fuzzy rule(R;) is represented on
the spaces of E X E X® as follows.

R,‘=(A,' X B,) X C,‘ (21)

Total rule(R) is summarized to the following equation.
”

R=R URU--UR,=U R; (22)
i=1

If fuzzy inputs are Z"(e), Ea(é) , then the fuzzy out-

put is:
CY®)=Max, ;[R(e, 6, D) AL AB@)]. (23

But, e e, generally, are observed by explicit values, so

;{7’, B° can be represented as follows.

~ 1 e=¢
4 (e)={0 e#e @9
i 1 é=é°
B(e)={0 o# & @

Also equation (23) is simplified to equation (26).

C(d) = R(e", &0, @)
, (26)
=R (& D)V - V R, (e, &, D),

where
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R, &%, @) = 4;(e%) A B, A C; (@)
=w; AC,(®) 27)

w; = 4;(e% A B; (&Y. (28)
Thus, the result of inference is

CU@)=[w, AC@NV[w, A C@)I V-V [, A Co(@)]

=V, [w; A Cr(®)]. (29)

But, 5’(4)) that is obtained by a fuzzy inference is
a fuzzy number. This fuzzy number can not be
directly used to an input to the plant. It must be
transformed to an explicit value. This transformation
is called a defuzzification. In this paper we use the
Center Of Gravity(COG) method for a defuzzification
that is expressed in equation (30). That is, a crisp
value for a boundary layer thickness is obtained from

the following equation.

C*(@)ddD
o] SO0 -

_j&@m@

Figures 4, 5, and 6 represent the fuzzy membership
functions for inputs |el, lel, and an output @,
respectively. Namely, all the membership functions
are isosceleses triangles for simplicity. And the fuzzy
rule base that relates |e| and le| to @ is given by
table 1. That is, table 1 is the summary of the fuzzy
rule base for self-tuning of a boundary layer thick-
ness. Here, the boundary layer thickness @ is not
fixed by an arbitrary value but self-tuned by some
fuzzy rules with the following knowledge:in the initial
state the thickness has a few large value for compen-
sating the chattering phenomenon, and then the more
the states approach the steady states, the more the
boundary layer thickness decreases within the limits
of no chattering phenomenon. In other words, if both
le| and |el have small values, namely, the states

approach near by the steady states, then the rule

decreases the thickness for improving the tracking
performance. Similarly, if |el or |el has a large
value, namely, the states are far away from the steady
states, then the rule increases the thickness for allevi-
ating the chattering phenomenon. Consequently, we
design a new VSC with a varying boundary layer of
which the thickness is thicken in the initial states and
thinned in the steady states. Also we use only 16 rules
for ensuring the effect of a proposed scheme. The
abbreviations that are used at table 1 mean as follows
:BiG(BG), MeDium(MD), SMall(SM), ZeRo(ZR).
Fig. 7 represents the overall structure of the proposed
control system, which consists of conventional SMC
with boundary layer and fuzzy rule base tuning the

thickness of a boundary layer.

1L ZR SM MD BG

lel

>
!

0 M

€

Fig. 4. The Membership function for |e].

71 4R SM MD BG

Fig. 5. The Membership function for le]|.

v

0 M,

Fig. 6. The Membership function for @.
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Table 1. Fuzzy Rule Table for Self-tuning Boundary Layer.

lel
lel BG MD SM ZR
BG BG BG BG BG
MD BG MD MD SM
SM BG MD SM ZR
ZR BG SM ZR ZR
s
> Rulebase
i (]
4
Reterence e d e+~ SMC with + w | ? Quiput
* T ey - Plani

- N _Boundary Layey =T
— e
|

L j

Fig. 7. The structure of overall control system.

IV. Simulation

In order to investigate the effect due to the
addition of the proposed algorithm we performed a
computer simulation. The plant to be controlled is an
inverted pendulum system. Fig. 8 shows the plant
that consists of a pole and a cart. The cart moves on
the rail tracks to the horizontal direction left or right.
The control objective is to balance the pole starting
from arbitrary conditions by supplying a suitable

force to the cart. The plant dynamics is expressed as

* gsin@ + acos 6 — p,w? [cosfsin

0= 1(4/3 = pycos? 0) G
m o F (32)
B e T mytm,

where g is an acceleration due to gravity(=9.8 m/
sec?), and F is the applied force. m.(=1.0kg) and m,
(=0.1kg) are masses and /(=0.5m) is the pole length.

A that determines the sliding line is given by the fol-

lowing condition [2].

A=— f (33)

FLC

Fig. 8. The inverted pendulum system.

where f; is the sampling frequency and is 100[Hz] in
our simulation. M,, M;, and M, that decide the
maximum range of membership functions are 1.0, 1.0,
and 2.5, respectively. Then the responses of the con-
trol input, the plant output, and the tracking error
are shown in Fig. 9.

40 T T T T
24 - -
8
-8
24 |- .
40 | 1 1 !
2 a 6 8 10
fime(sec)
(a) The control input.
05 T . . .
03 -
0.1
0.0
03 -
05 . L ! L
] 2 a 6 8 10
time(sec)
(b) The plant output.
0.002 T T T T
0.0012 ]
00004 -7 N~ T - “\]
0,004 e P i ]
-0.0012 1
0,002 L L o]
o z 1 & 8 0

o)
(c) The tracking error.

Fig. . The responses of the proposed system with a
self-tuning boundary layer thickness.
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In order to compare the results of our simulation
with those of conventional SMC with a thin bound-
ary, we simulate the conventional SMC with arbitrary
boundary layer thickness. Fig. 10 shows the results
with thickness of 0.5. Fig. 10(a) is similar to Fig. 9(a),
which shows that the control inputs are almost the
same in both cases. However, from the responses of
error we can see the fact that the response of our con-
troller is a little better. Fig. 11 shows that the
response of our controller is much better than that of
fixed thickness of 0.1. Consequently, as we expected,
our algorithm has a good effect on the tracking per-
formance as well as the response of a control input.

Fig. 12 represents the boundary layer thickness
being self-tuned. The thickness, in the initial state, is
a little large, but as the states approach the steady

state the thickness is reduced to a small value(about

4 6
time(sec)

(a) The control input.

4 6
time(sec)

(b) The plant output.

4 6
timefsec)
(c) The tracking error.

Fig. 10. The responses of the conventional system with the
thickness of 0.5.

10

0.28). Unfortunately the thickness is not zero even in
the final state because the zero boundary layer thick-
ness leads to the chattering phenomenon of a control

input.

40 T T
24 I~ —

-24 ) —

40 I 1

4 6
time(sec)

(a) The control input.

4 [}
time(sec)

(b) The plant output.

0.002
0.0012
0.00c4

-0.0004
-0.0012
-0.002

4 6
time(sec)

(¢) The tracking error.

Fig. 11. The responses of the conventional system with the
thickness of 0.1.

05

time [sec]

Fig. 12. The response of the boundary layer thickness for
the proposed system.
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V. Conclusions

We proposed a new sliding mode controller with a
self-tuning boundary layer thickness. The proposed
controller uses 16 fuzzy rules for tuning the thickness
of a boundary layer. Those fuzzy rules are based on
both the tracking error and its derivative. Namely in
the incipient stage that the error or its derivative is
probably large the thickness maintains a little bulky,
but it is little by little thinned as the states approach
the equilibrium points. That is, the thickness is
thinned in the steady states. By adding these fuzzy
rules, the conventional boundary layer approach for
the continuous control input of a sliding mode con-
troller is greatly improved in view of the tracking per-
formance. It is demonstrated by a computer simu-
lation for the tracking control of an inverted pendu-
lum system.

As a result, since a new proposed sliding mode con-
troller tunes the boundary layer thickness automati-
cally, it not only improves the tracking performance,

but also alleviates the chattering phenomenon.
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