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Bayesian Analysis under Heavy—Tailed Priors
in Finite Population Samplingl)

Dal Ho Kim?2), In Suk Lee3), Joong Kweon Sohn?, Jang Sik Cho®

Abstract

In this paper, we propose Bayes estimators of the finite population mean based on
heavy-tailed prior distributions using scale mixtures of normals. Also, the asymptotic
optimality property of the proposed Bayes estimators is proved. A numerical example
is provided to illustrate the results.

1. Introduction

Consider a finite population U with units labeled 1,2,...,N. Let y; denote the value of a
single characteristic attached to the unit i The vector y=(y,... ,:VN)T is the unknown

state of nature, and is assumed to belong to @= R". A subset s of {1 ,..., N} is called a
sample. Let #(s) denote the number of elements belonging to s. The set of all possible
samples is denoted by S. A design is a function » on S such that p(s) € [0,1] for all
se€ S and ?;sp(s)=1. Given ¥y € O and s={i),...,ix9} with 1<4,<...{iy 9 <N, let

¥W(s)={i ....¥i,}. One of the main objectives in sample surveys is to draw inference

about ¥ or some function (real or vector valued) {¥) of ¥ on the basis of s and »(s).

A unified and elegant formulation of Bayes estimation in finite population sampling was
given by Ericson(1969). Since then, there are many papers in the area of Bayes estimation in
finite population sampling. However, Ericson(1969) and others assumed the conjugate normal
priors for normal superpopulation models.
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Substantial evidence has been presented to the effect that priors with tails that are flatter
than those of the likelihood function tend to be fairly robust (e.g., Box and Tiao(1968, 1973),
Dawid(1973), O'Hagan(1979, 1989) and West(1985)). Priors which are scale mixtures of normal
have flatter tails than those of the normal automatically by construction. This class of priors
includes the Student t family, double exponential, logistic, and the exponential power family of
Box and Tiao(1973) among others. Andrews and Mallows(1974) and West(1987) used such
distributions for the simulation and the analysis of outlier models.

The price to be paid for utilization of such heavy-tailed priors is computational; closed form
calculation is no longer possible. Recently, however, the Markov chain Monte Carlo integration
techniques, in particular the Gibbs sampling(Geman and Geman(1984), Gelfand and
Smith(1990), and Gelfand et al.(1990)) has proved to be a simple yet powerful tool for
performing Bayes computations.

The outline of the remaining sections is as follows. In Section 2, we provide the Bayes
estimators of the finite population mean based on heavy-tailed priors using scale mixtures of
normals in the normal superpopulation model. Also, the asymptotic optimality(A.Q.) in the
sense of Robbins(1964) of proposed Bayes estimators is proved. In Section 3, a numerical
example is provided to illustrate the results of the Section 2.

For simplicity, in the subsequent sections, only the case when #n(s)#n = p(s)=0 is
considered. This amounts to considering only fixed samples of size n. Also, throughout the
loss is assumed to be squared error.

2. Bayes Estimation Under Heavy—-Tailed Priors

Ericson(1969) considered the superpopulation model y;=8+¢&;, (i=1,*,N), where
6, &,,ey are independently distributed with 6 ~ My, r2) and &;s are iid MN,d).
Write f=mn/N, My=0d"/r}, By=M/(My+m), y()=n "2y, and 3(s)= (y;: i&s},

s

the suffixes in (s ) being arranged in ascending order. Under the Ny, r3) prior, the Bayes
N
estimator of H¥)=N! Zly,- is
o
8°(s, 9(8)) = £ () + (1 =P {(1 —By) ™(s) + Byuy ). @.1)
Also, the associated posterior variance is given by

V(A %) | 5,%(8)) = N 2(N—n) *(My+N)/ (M, +n). (2.2)

Now, we consider a refinement based on heavy tailed priors on £ using scale mixtures of
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normals. That is, consider the case when () ;|18 LZQ',N(&OZ ) (i=1,,N) and (i)

0 ~ %0 p( 0;0” 0) where p(x) = Lw,ll/zqs(x/ll/z)g(/{)d/l and ¢(x) denotes the standard

normal pdf. Here p( - ) is a scale mixture of the normal distribution with mixing distribution
2(+). Note that we can write (ii) in the following two step; (ia) 1A ~ N(up,A™") and

(iib) A ~ rig(72) where .{; 2(x)dx=1. The following list identifies the necessary functional

form for g(A) to obtain a wide range of densities which represent departures from normality:
t-priors: If RA ~ 22 then @ is Student t with k degrees of freedom, location parameter

Yy, and scale parameter 7.

double exponential priors: If 1/A has exponential distribution with mean 2 then @ is double

exponential with location parameter gy and scale parameter z.

exponential power family priors: If A has positive stable distribution with index a/2 then 8

has exponential power distribution with location parameter g and scale parameter 7p.

logistic priors: If V A has the asymptotic Kolmogorov distance distribution then 6 is logistic
with location parameter gz, and scale parameter z;. [A random variable Z is said to have an

asymptotic  Kolmogorov  distance distribution if it has a pdf of the form

R2) =82 gl( 1) Pexp(—27%0) g (D).

Then the posterior distribution of ¥(s ) given by s and ¥(s) is obtained as follows:
(i) conditional on s, ¥(s) and A, ¥(s) has

N (B s+ (1B Lnns & Dnt iy Ivw Unea)) @3

where B(X) = Ad%/(Ad®+n);
(i) the conditional distribution of A given s and (s) has pdf

N N2
AR 5359 o (@ +m™) x| - l’z—%]ﬁm 2.4

Note that under the posterior distribution given in (2.3) and (2.4), the Bayes estimator of

N
Hy)=N1 '_y:.ly; is given by
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SM(s, () =ELAN 9 | 5,%)1=ELELA ») | 5,%(5),A1 | 5,3(5)]

=) + (1 =D {ELBN) | 5,5()ug+(1—E[BQ) | s, XIDAs)}  (25)
Also, one gets
VK ») | 5,%(5)

=E[ V(A9 | 5,5(),) | s, )]+ VIE(A») | 5,%5),) | 5,3(5)]
=N 22 {(N—n)+ (N—n)? E( (A +n) 71| 5,%(9))}
+ (1= By + (1 —B()) %s) | 5,%(s)). (2.6)

The calculations in (2.5) and (26) can be performed using one-dimensional numerical
integration. Alternatively, one can use Monte Carlo numerical integration techniques to
generate the posterior distribution and the associated means and variances. More specifically,
in this section, we use Gibbs sampling originally introduced in Geman and Geman(1984), and
more recently popularized by Gelfand and Smith(1990) and Gelfand et al.(1990).

Using Gibbs sampling, the posterior distribution of (s ) is approximated by

a_lé‘.l[y(g )15, 3(5),6=6;,A=A]]. @7

To estimate the posterior moments, we use Rao-Blackwellized estimates as in Gelfand and
Smith(1991). Note that EIA ) | s,¥(s)]is approximated by

) +(1=Na ™ E B+ (1~ BANKS). 28)

Next one approximates W{y{(y) | s,3(s)) by

NP UN=m)+(N=ma" E (4,0 +m) )
+1=p[a7 BB+ (1= BUNH)?

(0 Z (Bt A=BaN3 Y], @9

The Gibbs sampling analysis is based on the following posterior distributions:

@ 015,593 )4 ~ N Qo+ Z3JAIG+N ), G+NP);

(i) AA|5,3(8),5(5),6) o VAexp[—4(6— 1)1 D)

(i) ¥(s)1|s8(s),8,4 ~ NG 1y, & Iy_,].
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Note that if A&\~ x*, then AAls»s),¥(s), 0 reduces to a Gamma

(%{zﬁk+(0—#0)2}, %(kﬂ)) density. [A random variable W is said to have a Gamma

(a, B) distribution if it has a pdf of the form Aw) o< exp(—aw)w® I «)(w), where I
denotes the usual indicator function]. Also, if 1/A has exponential distribution with mean 2
then A4l s5,3(s),3(s),60 reduces to a IGN (1/y r2(6—py)?, 1/70) density. [A random
variable V is said to have a IGN (#,,7,) distribution if it has a pdf of the form

_ 2
f(v)___ %v_a/zexp(— ”2(20%;}1) )I(()'oo)(v) ]

We shall now evaluate the performance of the Bayes estimator &M of 8 for large # under
the N(yq, rﬁ) prior, say #;. The Bayes estimator of 6 under this prior is 8° which is given
by (2.1). Let #{(m,, ) denote the Bayes risk of an estimator & of 6 under the prior 7. Our

aim is to show that #{(my, &%) — (1, 8%) — 0 as n — oo,

Lemma 2.1 Assume E(A%2) ¢ oo, Then EIB(A)| s,3(s)] 20 as #n — oo

Proof Note that

0 o o) — 2
E[BQ) | s, (9= [ (+ni™) *expl - %ﬁ_‘%]g( riA)dA

=N \2
: f (oz+n,r1)‘”2exp[——%‘é°l))—]g(zﬁa)da

SE{( 1+n(012)-1/r1 )1/2 1+n(olz)‘1,r1]

()

1
]

-1y-—- 1/2 _
'E{( 1:(710(232)151;-1) ""zeXD(——’Z‘—(y(s)—,,o)z)]

Z: (say). (2.10)
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Now, P, < n_lo2E(/13/2)-2' 0, if E(A%?) ¢ oo, Also,

Qu= Bl (n7'A+D) 4 exp(— 4 () —)))]. @11)

Note that ;(s)~—;10 is the centered mean of an exchangeable sequence of random variables,
and hence, is a centered backward martingale. Hence, (3(s)—gg)? is a backward
submartingale.  Since  limsup , . «E(3(s) —pg)’=12 < +%, by the submartingale

convergence theorem, (¥(s)— #0)2 converges a.s. to a rv, say Y, Hence, using Fatou's

lemma

liminf , . @, > E[A"exp(— 4 YD), 2.12)

where the lower bound is bounded away from zero as.. Hence, P,/ Qn-ﬁ' 0 as » — oo,

We now turn to the theorem which proves the A.O. property of 8™ obtained in (2.5).

Theorem 2.1 Assume E(A*2) ¢ oo, Then H(my, ) — (7, 8°) — 0 as n — oo,

Proof. Standard Bayesian calculations yield
Hmy, 8M) — H(my, 8°) = B(8M —§")?

=(1—H2E[ (E(B(A) | 5,5(5)) —Bp)(3(s) —s)?]. (2.13)
By lemma 2.1, E[B(R) | s,y(s)]-z 0 as #— oo, Also, By — 0 as #n — oo, Hence,

(E(B(A) | s,%()—B)?> 0 as n— o Also, |EBQX)Iss)—Byl <1 and

(3(s) —pp)? being a backward submartingale is uniformly integrable. Hence, the rhs of (2.13)

— () as n — oo, This completes the proof of the theorem.

3. An Example

We illustrate the results of Section 2 with an analysis of data in Cochran(1977). The data
set consists of the 1920 and 1930 number of inhabitants, in thousands, of 64 large cities in the
United States. The data were obtained by taking the cities which ranked fifth to sixty-eighth
in the United States in total number of inhabitants in 1920. The cities are arranged in two
strata, the first containing the 16 largest cities and the second the remaining 48 cities. But for
our purpose, we just use the second stratum only. For the complete population, we find the
population mean to be 197.875 and the population variance 5580.92. We use the 1920 data to
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elicit the prior in our setting so that sp=165.438 and ri=71.424. We want to estimate the

average(or total) number of inhabitants in all 48 cities in 1930 based on a sample of size 16
(ie. 1/3 sample). For illustrative purposes, we report our analysis for one sample.

To implement and monitor the convergence of the Gibbs sampling, we follow the basic
approach of Gelman and Rubin(1992). We consider 10 independent sequences, each with a
sample of size 5000 with a burn in sample of another 5000. We sample the @ initially from a
t distribution with 2 degree of freedom. The justification for t distributions as well as the
choice the specific parameters of this distribution are given below.

First note that from the posterior distribution of A given s and »(s) as given in (2.4), we

find the posterior mode, say A by using the Newton-Raphson algorithm. Also, we use %(s)

for v, 1€ s  based on sample. We can now very well use the

N [(Apg+N(s) /A /(A+N/d®, (A+N/d®) ‘Jas the starting posterior distribution for 6.
But in order to start with an overdispersed distribution as recommended by Gelman and
Rubin(1992), we take t distribution with 2 degree of freedom. Also, note that once the initial
@ value have been generated, the rest of the procedure uses the posterior distributions as
given in (i)-(ii) in Section 2.

Table 3.1 provides the Bayes estimates of 7{¥) and the associated posterior standard

deviations for the normal, double exponential and t prior with degree of freedom 1, 3, 5, 10
and 15. Note that naive estimate, that is, the sample mean is 207.69.
An inspection of Table 3.1 reveals that there can be significant improvement in the estimate

of AW y) by using heavy-tailed prior distributions rather than using the normal prior

distribution in the sense of the closeness to Y ¥). For instance, using the double exponential

and the t(1), t(3), t(5), t(10) and t(15) priors, the percentage improvements over the normal
are given respectively by 45.78%, 89.05%, 52.06%, 30.68%, 1553% and 9.06%. Here the
percentage improvement of e; over e, is calculated by

((ey— truth)® — (e, — truth) %)/ (e, — truth)?,

where e, is the Bayes estimate based on heavy-tailed prior distributions and e, is the Bayes

estimate using the normal prior. Also as one might expect, flatter the prior, closer is the
Bayes estimates to the sample mean. In general, for most cases we have considered, the
Cauchy prior (ie., t prior with 1 degree of freedom) leads to an estimate which is closest to
the population mean.

To monitor the convergence of the Gibbs sampler for f, we follow Gelman and

Rubin(1992). We find R value (the potential scale reduction factors) corresponding to 6. If

R is near 1, it is reasonable to assume that the desired convergence is achieved in the Gibbs
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sampling algorithm (see Gelman and Rubin(1992) for the complete discussion).
The second column of Table 3.2 provides the R values corresponding to the estimand &

using Cauchy and double exponential priors based on 10 %5000 =50000 simulated values. The

third column provides the corresponding 97.5% quantiles which are also equal to 1. The
rightmost five columns of Table 3.2 show the simulated quantiles of the target posterior

distribution of @ for each one of the 2 estimates based on 50000 simulated values.

Table 3.1. Bayes Estimates and Associated Posterior Standard Deviations

Priors Bayes Estimates Posterior SD
Normal 184.31 10.19
DE 187.89 12.16
t(1) 193.38 1501
t(3) 188.48 12.63
t(5) 186.58 1151
t(10) 185.41 10.75
t(15) 18494 10.50

Table 3.2. Potential Scale Reduction and simulated Quantiles

Potential scale
reduction Simulated quantiles
Priors R 975 % | 25 %/ 25.0% | 50.0% 75.0% | 97.5%

Chaucy 1.00 1.00 |160.00 |171.98 (183.09 (198.17 (226.89
DE 1.00 1.00 [158.68 |168.54 |176.00 [185.55 |206.82
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