Confidence Intervals on Variance Components in Two Stage Regression Model

  • Park, Dong-Joon (Full-time Lecturer, Department of Applied Mathematics, National Fisheries University of Pusan, Pusan, 608-737, Korea.)
  • Published : 1996.08.01

Abstract

In regression model with nested error structure interval estimations about variability on different stages are proposed. This article derives an approximate confidence interval on the variance in the first stage and an exact confidence interval on the variance in the second stage in two stage regression model. The approximate confidence interval is vased on Ting et al. (1990) method. Computer simulation is procided to show that the approximate confidence interval maintains the stated confidence coeffient.

Keywords

References

  1. Journal of the Royal Statististical Society A v.14A Statistical modelling issues in school effectiveness studies(with discussion) Aitken, M.;Longford, N. T.
  2. 통계이론방법연구(forthcoming) The distributions of variance components in two stage regression model Park, D. J.
  3. Communications in Statistics-theory and methods v.22 no.12 Confidence inrevals on the among group variance component in a simple linear regression model with a balanced one-fold nested error structure Park, D. J.;Burdick, R. K.
  4. Linear Models Searle, S. R.
  5. SAS User's Guide: Statistics, Cary Statistical Analysis System
  6. Journal of Statistical Computation and Simulation v.35 Confidence intervals on linear combinations of variance components Ting, N.;Burdick, R. K.;Graybill, F. A.;Jeyaratnam, S.;Lu, T. -F.C.
  7. Proceedings of the 9th Asia Quality Management Symposium - Quality Enhancement for Global Prosperity A new estimation method for a useful class of mixed models Tsubaki, M.;Tsubaki, H.;Kusumi, M.
  8. Commnuications in Statistics-theory and methods. v.24 no.5 Confidence intervals on variance components in regression models with balanced (Q-1)-fold nested error structure Yu, Qing-Ling;Burdick, R. K.