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A Graphical Approach to Paired Rankings '
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Abstract

Paired rankings data comes to us in two situations. One situation
is when pairs of subjects, say husbands and wives, are asked to rank
a group of objects. Another situation is when subjects are asked to
rank a group of same objects at two time points, say, before and after
the treatment. In this study, we show how biplot techniques can be
applied to represent graphically such paired rankings.

Key Words : Simultaneously paired rankings; Sequentially paired rank-
ings; Quantification; Biplot.

1. INTRODUCTION

Ranked data are obtained by asking subjects(or judges) to rank a set
of objects(or items). For example, potential buyers order different brands
of personal computers in terms of which one he likes best, second best,
and so on. Statistical analysis of such data were dealt in Mallows(1957),
, Critchlow(1985), Baba(1986), and Diaconis(1988) among others.
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Recently, Critchlow and Verducci(1992) introduced methods for analyzing
paired rankings data. Their paired rankings are generated when subjects in a
study independently rank a set of objects before and after the treatment. Such
sequentially paired rankings need conditional approach. Thus, they used the
conditional distribution of subject’s post-treatment rankings given their pre-
treatment rankings, under the hypothesis that each subject’s post-ranking is
symmetrically distributed about its pre-ranking.

Another situation is when a pair of rankings arrives simultaneously, for
example, when couples of a husband and a wife are interviewed for their opin-
ions on a number of objects in a form of ranking, it might not be natural to
condition on one part of paired rankings or on the other part of paired rank-
ings. Such simultaneously paired rankings need symmetric approach. Thus,
Huh et al.(1995) have considered a symmetric extension of paired rankings.
Their method analyzing paired rankings is based on probability ranking mod-
els, such as a class of Mallows’ models.

In this study, we investigate the three problems as follows. First, we will
classify paired rankings data into two categories. Second, we will propose
biplots for both sequentially and simultaneously paired rankings data, based
on quantification. The biplot, originated from Gabriel(1971), is such a nice
graphical tool that subjects(observations) as well as objects(variables) can
be plotted to show off mutual relationships. Third, we will also propose
procedures for detecting the trend in sequentially paired rankings and the
within-pair difference in simultaneously paired rankings. We have used “data
analytic approach” based on description of multivariate data without any
specific probability assumptions. The method we proposed is entirely different
point of view from the tradition of modeling approach based on probability
ranking models, such as Mallows’ models.

2. QUANTIFICATION OF SIMULTANEOUSLY PAIRED
RANKINGS

Suppose that n pairs of subjects are asked to rank a group of p objects.
Let rg] be the rank given to the object j(= 1,---,p) by the first subject of

the i(= 1,---,n)-th pair, and rz{?] be the rank given by the second subject.
As a row centering process, let

s == @2 s =rl -2
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and write Sl
1 2
sl — (3£j1)7 gl — (sijl)’ S = (S[2]> .
In Spearman’s sense, the squared rank distance between two rows 4 and
(3,4 = 1,---,n,i # ') is defined by

p
d2(3,i") = (815 — s05)%.

i=1

We can write the Spearman rank correlation between two rows ¢ and i’ as

1-6 di(,i)/p(p* — 1).

Then, one type of biplot can be obtained from singular value decomposi-
tion(SVD) of 2n x p matrix S(Lebart et al., 1984). Let

S = UD,\V,,

where U is a 2n x p matrix with orthonormal columns, V = (vy,vg,- -+, v,) is
a p x p orthonormal matrix, and D, is a p x p diagonal matrix with singular
values A\; > -+ > A,_1 > (A, = 0, since rank(S) = p — 1) as its diagonal
elements. Then two-dimensional row plot points are given by the rows of

G" = S(’Ul : 'UQ) — UD,\V'(vl . Ug) = U(Q)DA(Z),

where U(q) is an 2n x 2 submatrix of U and D) 9) is a 2 x 2 diagonal submatrix
of D,.

One particular merit in the row plot is that Spearman’s distances between
rankings given by subjects(rows of S) are approximately preserved, since

S5 = (UD\WV')(UD,V') =UDU' = G'G".

The'refore, the goodness-of-approximation of the two-dimensional row plot is
given by

GOA pyiz) = 1|8V = (SVy) : O2nx(p~2))||2/||SV||2

= (A4 22/ + -+ AD).

where V() = (v1,v7) is the n x 2 submatrix of V.
For the plot of columns(or objects), we consider a group of hypothetical
supplementary rows(or subjects), rows of I,, and use the same PC axis vector
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v. Then, two-dimensional column plot points for objects are given by the rows

of
H* - ‘/(2).

For further details of this procedure, see Han and Huh(1995). The goodness-
of-approximation of the two-dimensional column plot is given by

GOAcol(2) =1- “V(p-l) - (H* : Opx(p—fi))”z/HV(p—l)||2

=1-(=-3)/(p-1)=2/(p-1),
where V{,_y) is the p x (p — 1) submatrix of V.

The biplot, produced by combining row and column plots, can be inter-
pretable as follows. Note that S can be expressed as

S = (UD)\)V, = (U(Q)D,\(z))‘/(/g) — G*H”.

Thus the raw data elements are recovered by the inner products of row and
column plot vectors.

Next, we may ask a question whether there exists a systematic within-pair
difference. To answer this question, we use the plot for the differences between
first group rankings and corresponding second group rankings. Partition G*
into two equal-size n x 2 matrices, GU* and G!?*, then two-dimensional row-
differences plot in which plotting points are given by the rows of

G[2]x _ G{l]* — {gl[z]* _ g!l]*, — 1, [P ’n}’

where ¢

glm* is the row plot points for the first subject of the i-th pair. An example
will be given in Section 4. We may try, another type of quantification by
changing the sequence of plotting and differencing. See Chapter 3 of Han’s

dissertation(1995) for details.

is the row plot points for the second subject of the i-th pair and

3. QUANTIFICATION OF SEQUENTIALLY PAIRED
RANKINGS

Consider a situation in which subjects are asked to rank a group of same
objects at two time points, say, before and after the treatment. An example,
literary criticism data(Critchlow and Verducci, 1992), which we shall analyze
in detail, came from a study where n = 38 secondary school children rank
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p = 4 styles of criticism, ‘authorial’, ‘comparative’, ‘personal’ and ‘textual’,
as applied to a certain story. The students then undergo a course in writing
and literary criticism and afterwards rank the same four styles of criticism
applied to a similar story. The question of interest includes whether or not the
post-treatment rankings have moved in the direction of a particular idealized
ranking a, e.g. the teacher’s own ranking of the four styles.

Suppose that two sets of rankings are sequentlally paired, yielding r[ |

as the first measurement rankmgs(pre—rankmgs) and rU as the second(post—
rankings) given to the object j(= 1,---,p) by the subject i(=1,---,n).
Consider singular value decomp031t10n(SVD) of n x p matrix S!!. Specif-

ically, write
gl — U[I]D/[\llvlll'7

where UV is a n x p matrix with orthonormal columns, V!l = (o{% i ... v[)
is a p x p orthonormal matrix, and D ,[\1] is a p x p diagonal matrix with singular

values, Ay > -+ > A,_1 > A, (= 0) as its diagonal elements. Then, for the
first set of rankings, two-dimensional row plot points are given by the rows of

Gl = Sl ofly = WY 1 ;)
1] 1 1. [t
ool = o4
where U (I2]) is a n x 2 submatrix of U D}\1(12 is a 2 x 2 diagonal submatrix of

Dil and (rl" ré 1 are first two PC score vectors.

For the second set of rankings, we treat them as a group of hypothetical
supplementary rows(or subjects), and use the same PC axis vector v. Then,
for the second set of rankings, two-dimensional row plot points are given by
the rows of

o2y — gl ]‘/([21)1 — 5(2](U£1] : vg]),

where V([zl)] is a n > 2 submatrix of V. Then, write G?* = (rZ : +¥1). And,

two-dimensional column plot points are positioned at

* % 1 1 1
H™ =V = (o).

We also can define the two dimensional goodness-of approximation for the
pre-ranking row plot as

GOA“] 1 ||5[1]V[11 _ (Glll* . Onx(p—z))||2/||5mV[1]||2

row(2)

= (AT H M) /(AT + -+ A2
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Similarly, for the post-ranking row plot, it is defined as

GOASq) = 1= [ISPIVI — (GBI 0 o) [1P/11 PV 2

row(2)

For the column plot, we may define as follows
GOAcol(2 1 - ”V(p” 1) (H** : Opx(p 3))” /H (p 1) Hz - 2/(P - 1)

where V([P”_I) is the p x (p — 1) submatrix of VI,

One particular merit in row plot is that Spearman’s rank distance between
rankings of the first set are approximately preserved, while the second set
of rankings are positioned in perceptional space derived by the first set of
rankings.

By superimposing the pre- and post-ranking row plots, we may check
whether there exists a trend from pre- to post-rankings. But, these plots look
very complex for moderately large n and it seems to be difficult to extract
any meaningful informations. To make things easy, we propose the following
procedure for trend analysis:

First, plot the first principal component score vectors(= (rl! : r{f])) of
the pre- and post-rankings. We call it “the trend plot” on first principal
component axis.

Second, plot the second principal component score vectors(= (réll : rézl))
of the pre- and post-rankings. We call it “the trend plot” on second principal
component axis.

When, “ideal ranking” exists, we may apply the above procedures for
trend analysis by plotting the principal scores obtained by quantification cen-
tered at the plot point of ideal ranking. Then, evaluate how close post-ranking
is to the idealized ranking.

4. NUMERICAL ILLUSTRATIONS

4.1 Stress Patterns of Newlyweds

We will illustrate the above simultaneously paired rankings procedure us-
ing the data set given in Huh et al.(1995). Here, we analyze blood concen-
tration of the hormonal prolactin, which is known to be positively correlated
with the amount of stress that an individual is experiencing. The data, col-
lected by Dr. Malarkey and his colleagues at Ohio State University Hospital,
is described by Huh et al.(1995) as follows:
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Blood samples were taken from pairs of wife and husband during a
24 hour interval. Of particular interest are the relative levels of pro-
lactin at five periods of time during this day: baseline (early morning),
conflict session (during the hour after baseline), intermission (15 min-
utes after the end of the conflict session), post-session (one hour after
the intermission), and the ensuing night. The conflict session centered
around a wife-husband negotiation on an issue known to be especially
stressful for that particular couple. For each individual, the five time
periods are ranked according to the concentration level of prolactin
in that person’s blood sample. The time periods are listed in their
temporal order: = Baseline, C = Conflict, I = Intermission, P =
Post-session, and N = Night. Each person’s ranking is represented by
an ordered 5-tuple that lists the relative ranks of the five time periods,
ranked according to increasing order of prolactin concentration.

The row plots are shown in Figure 1 with the goodness-of-approximation
78%. Thus almost eighty percent of the total variation among the subjects is
explained by the first two principal component axes. Also, the column plot
is shown in Figure 2 with the goodness-of-approximation 50%. By superim-
posing the row and column plots, we obtain biplot of simultaneously paired
rankings. In Figure 1, the largest one of both wives’ and husbands’ cluster
are found in the right-side region along the first axis, of which corresponding
position in Figure 2 is assigned to put N as “high prolactin concentration”.
So, we may interpret that prolactin concentration peaks during the night for
both wives and husbands.

Next, row-differences plot is shown in Figure 3. By superimposing the
row-differences plot (Figure 3) and column plot (Figure 2), we see that No.7,
No.8, No.16, No.21, No.26, No.28, and No.31 husbands have relatively higher
prolactin concentration during “P” compared to their wives, while No.30
husband has relatively higher prolactin concentration during “I”. On the other
hand, No.12, No.14, No.15, No.18, No.22, No.32, and No.33 husbands have
higher prolactin concentration during “B”. Finally, No.1, No.2, and No.9
husbands have relatively higher prolactin concentration during “N”. However,
in Figure 3, we observe that the existence of systematic within-pair difference
is not apparent since the row-differences plot points are distributed evenly
around the origin. This result is quite similar to the significance testing
result obtained by Huh et al.(1995).
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4.2 Pre-and Post-course Rankings of Four Critical Styles

We will illustrate the sequentially paired rankings procedure using the
data set given in Critchlow and Verducci(1992). The data was collected by
Rogers(1990) under the following contexts:

Thirty-eight ninth grade students are participants in a course in writing
and literary criticism. At the beginning of the course, they read the
story “A rose for Emily” by William Faulkner, and are asked to rank
four critical paragraphs according to their personal preferences. The
selected paragraphs typify four distinct critical styles: A = Authorial,
C = Comparative, P = Personal, and T = Textual. At the end of the
course, the students read another story by William Faulkner, “That
Evening Sun,” and again rank four critical paragraphs written in the
same four styles.

One special feature in this data is that there exists the ideal ranking o
which is also called the attractor in Critchlow and Verducci(1992). The ideal
ranking is specified as a =(P, C, A, T), where object P is ranked as the best,
object C is ranked as the second best, object A is ranked as the third best,
and object T is ranked as the worst.

Pre-and post-rankings row plots(including ideal ranking ) are shown in
Figure 4 and Figure 5 with the goodness-of-approximation 75.8% and 59.8%,
respectively. Also, column plot is shown in Figure 6 with the goodness-of-
approximation 66.7%. By superimposing the row and column plots, we obtain
biplot of sequentially paired rankings. Next, we evaluate how close his post-
ranking is to the idealized ranking through the trend plots. Trend plots on
principal component axes are shown in Figure 7 and Figure 8 respectively.
In this particular case, for easy perception of the trend, the principal com-
ponent scores obtained by quantification were subtracted from the plot point
of ideal ranking «. In Figure 7 and Figure 8, Region 1 is the improved area
towards the ideal ranking and Region 2 is the area for the disimprovement.
In this particular example, about half of the subjects have trend towards the
ideal ranking, while the remainders have trend with the opposite direction.
Specifically, in Figure 7 of the trend in the first PC axis, No.8, No.16, No.24,
and No.26 students made significant improvements towards the ideal ranking,
while No.7, No.10, and No.14 students got worse. Also, in Figure 8 of the
trend in the second PC axis, we see that No.23, and No.19 students made
significant improvements towards the ideal ranking, while No.12, No.14, and
No.6 students got worse a lot. (This result is not fully consistent with the
significance testing result obtained by Critchlow and Verducci(1992). But,
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Thompson(1993) reached a similar conclusion to ours by plotting the fre-
quencies of the pre- and post-ranking on a truncated octahedron).
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5. CONCLUDING REMARK

In this study, we derived biplots for two types of paired rankings by quan-
tifying objects and judges. Specifically, we proposed a row plot, in which the
interpoint distances between plot points can be interpreted as an approxima-
tion of the (squared) rank distance between rankings given by corresponding
subjects in Spearman’s sense. Similarly, we also proposed a column plot for
objects having a sensible relationship to the row plot for subjects. Specially,
these graphs give us good information for the clustering of judges. Using
biplots for paired rankings, we are able to visually detect the within-pair dif-
ference and the trend between two sets of rankings . And we also find clusters
of subjects showing similar patterns of statistical change. Also, in each bi-
plot, we define and compute ”goodness-of-approximation” measures to guard
ourselves against over-interpretation. We would like to add one remark.

The same idea in Section 2 and Section 3, can be also applied to another
type coding scheme(Kendall-type coding scheme) for paired rankings data in
a similar way. The Kendall-type coding scheme that is derived directly from
pairwise comparison of objects is convenient for computing rank distances in
Kendall’s sense. Then, we may produce biplots in which Kendall’s rank dis-
tances instead of Spearman’s are preserved approximately. For more details,

see Han(1995).
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