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Abstract

In this paper we consider weak convergence of some rescaled transi-
tion probabilities of a real-valued, k-th order (k > 1) stationary Markov
chain. Under the assumption that the joint distribution of £ + 1 con-
secutive variables belongs to the domain of attraction of a multivariate
extreme value distribution, the paper gives a sufficient condition for
the weak convergence and characterizes the limiting distribution via
the multivariate extreme value distribution.

Key Words : Weak convergence; Transition probability; Higher order
stationary Markov chain; Domain of attraction; Multivariate extreme value
distribution.

Department of Applied Statistics, University of Suwon, Suwon, Kyonggi-do, 445-743,
Korea.



314 Seokhoon Yun

1. INTRODUCTION

Extreme value theory for Markov chains has a relatively short history,
compared with the general theory for them. Although a basic development
can be found in early papers like Berman (1962) and Anderson (1970), it
was not until late 1980’s that main contributions were made in the literature.
Among others there are O’Brien (1987) and Rootzén (1988) who found sim-
ilar characterizations for the extremal index of a stationary Markov chain.
Extreme values of a stationary Markov chain tend to appear in clusters and
the average size of each cluster is typically approximated by the reciprocal of
the extremal index. The extremal index, together with the marginal distribu-
tion, also explains the tail distribution of a sample maximum of a stationary
Markov chain. The extremal index is therefore a key parameter for study-
ing the extremal behavior of a stationary Markov chain. For review on the
extremal index, see Leadbetter, Lindgren and Rootzén (1983).

From a computational point of view, O’Brien’s characterization for the
extremal index is still intractable to apply naively. Smith (1992) used this to
find a more practical method for computing the extremal index of a stationary
Markov chain {X,}. The principal assumption he used in his paper is that the
joint distribution of (X, Xn+1) is in the domain of attraction of a bivariate
extreme value distribution. If standard Gumbel marginals are assumed, a
version of the domain of attraction assumption for densities is stated as: the
limit

h(z) = ullrglo fu+zlu), z €N, (1.1)

exists, where f(y|z) denotes the stationary transition density of the chain.
In fact, Smith adopted this assumption. The A(z) in (1.1) is not in general a
proper density on R.

One would expect, from (1.1), that, as u — 00,

P(Xpi1 < utz|Xo=u)> H(z) (1.2)

for some distribution function H on {—oco} U %, where ~, denotes weak con-
vergence. If h(z) in (1.1) is a proper density, then (1.2) holds automatically,
with H(—o00) = 0; otherwise, there is no guarantee for (1.2). Instead of (1.1),
Perfekt (1994) assumed (1.2) to derive an expression for the extremal index
of {X,.}. He also extended the Gumbel marginals to more general marginals
which of course belong to the domain of attraction of a univariate extreme
value distribution. Perfekt (1993) again extended these results to multivariate
stationary Markov chains.



Weak Convergence of Rescaled Transition Probabilities

On the other hand, Yun (1995) extended Smith’s result to a k-th order
(k > 1) stationary Markov chain {X,}, assuming that the joint distribution
of k + 1 consecutive variables is in the domain of attraction of a multivari-
ate extreme value distribution. Galambos (1987) and Resnick (1987) have a
good review on the theory of multivariate extreme value distributions. Under
standard Gumbel marginals, a version of this assumption for densities may
be stated as: for each j = 1, ..., k, the limit

hi(Tj41 — Tj582 — L1y ey T — zi 1)

= ullnolo firi(w+ zjlu+ 2y, u+ 25), 21,2541 € R, (1.3)

exists, where f;41(z;+1]z1,...,z;) denotes the stationary conditional density
of Xnij+1 given (Xoi1,..., Xnyj) = (21, ...,z;). As before, this however does
not imply in general that, as u — o0,

P(Xn+j+l Su +xj+1l(Xn+l7"',Xn+j) - ('U ‘|'931,~-,U+1'j))

2 Hi(Tje1 — 5502 — 1,00 &5 — Tj1) (1.4)

for some distribution function H;(-;zs — 1,...,x; — £;-1) on {—co} U R,
Removing the restriction of standard Gumbel marginals, one may get more
general forms of (1.3) and (1.4).

This paper gives a sufficient condition for convergence (1.4) under assump-
tion (1.3). Instead of standard Gumbel marginals, we will work with more
general marginals. The limiting distributions in (1.4) depend heavily on the
structure of the considered multivariate extreme value distribution from which
a possible atom of H;( ;29 — z1,...,Z; — r;-1) at —o0 is characterized. It is
also shown that, if the joint distribution of k + 1 consecutive variables in the
chain is itself a multivariate extreme value distribution, convergences (1.3)
and (1.4) hold automatically.

An interpretation of (1.4) is that, when the chain starts at a high level u
(i.e., X = u) tending to oo, the increments Y7 = X3 — X1,Y; = X3 — Xo, ...
form asymptotically a (k — 1)st order Markov chain which is completely de-
termined by the limiting distributions H;(y;;y1,..-,%5-1), J = 1,...,k. This
implies that, for k£ = 1 in particular, the given chain in the tails looks like a
random walk (see Smith (1992) also). This tail behavior is extremely help-
ful in computing the extremal index and is expected to be used effectively
for characterizing the extremal properties of higher order stationary Markov
chains. As a statistical application, the limiting distributions in (1.4) are
also expected to play an important role in modeling the joint distribution of
extreme values within a cluster of a high level u.
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The rest of the paper is organized as follows. Section 2 discusses briefly
the domain of attraction of a multivariate extreme value distribution. Section
3 contains main results. Section 4 contains three examples.

2. PRELIMINARIES
For a,b,x € R? and for o, 3 € R, we write

ax +b = (ajz; + by, ...,a,z, + b,),
ax + B3 = (azy + 8,...,az, + B).

Let F,(x) be a p-dim. distribution function with equal univariate marginals
Fi(z). Assume that F, belongs to the domain of attraction of a p-dim. ex-
treme value distribution, i.e., there exist p-dim. vectors a(® > 0 (with com-
ponentwise ordering) and b(™ € £ n = 1,2, ..., such that

Fra™x+b™) % G,(x), asn — oo,

for some p-dim. nondegenerate distribution function G,, where F(x) stands
for (F,(x))". This assumption is usually written as F, € D(G,). Taking
marginals shows that F; belongs to the domain of attraction of a univariate
extreme value distribution. This is equivalent to the condition that there
exists a £ € R such that

i L= Pl t g(w)e)

— -1/¢ 9
UTIFI 1 _ Fl(u) (1 +§CL')+ y X € §Ra ( 1)

where 2, = sup{z € R : Fi(z) < 1}, z, — max{z, 0}, and

zp =00 and g(u) = 1+ €u if ¢€>0
g{u) is some strictly positive function if ¢ = 0; (2.2)
zp, < oo and g(u) = —€(zp, — u) if £€<0.

Condition (2.1) is, in fact, a reformulation of Theorem 1.6.2 of Leadbet-
ter et al. (1983). For the left endpoint of F;, we use the symbol zy , le.,
2y, = inf{z € R : Fi(z) > 0}. Considering that G, is unique up to vector
normalizations, one may let G, have equal univariate marginals G, say, and
take G; = Q, where

Q(2) = exp{—(1+ o)t} z e
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Throughout the paper the case £ = 0 is always interpreted as the limit £ — 0,

Le.,
Qo(z) = exp(—e ¥), z € R,

the standard Gumbel distribution. A higher dimensional extension of (2.1)
is due to Marshall and Olkin (1983). Under the condition that G, has equal
univariate marginals G| — ) for some £ € R, the assumption F, € D(G,) is
equivalent to the condition that

lim 1 — Fy(u+g(u)x)
ulzp, 1- Fl(u)

= —logG,(x), 1+ &x >0, (2.3)

where zr, and g satisfy (2.2). This convergence gives a clue for the existence
of the limit of the form in (1.3). The details are referred to the following
section.

The multivariate extreme value distribution G, has a special representa-
tion, which is due to Pickands (1981). In fact, there exists a finite positive
measure @, on the (p — 1)-dim. unit simplex

P
SP:{WGW’:WZO, Zwizl}

i=1

satisfying
/ w; dQ,(w)=1,i=1,...,p
Sp

such that

G,(x) = exp l— max {wi(l + gxi)—”f} de(w)} , T+&x >0, (24)

S, 1<i<p

Assuming G, is absolutely continuous, Coles and Tawn (1991) derived an
explicit form of the derivative of G, in terms of the measure densities of
@, on the interior, and on each of the lower dimensional boundaries, of S,.
Specifically, for each i = 1,...,p, let ¢ be the (nonnegative) density of @,
on the (i — 1)-dim. interior of 5} = {w € S, : w,, = 0 Vm ¢ C}, where
C is a nonempty subset of C, = {1,...,p} of size i. By the construction of
Sy¢ it is clear that S?“» — 5, and that S is isomorphic to the (i — 1)-
dim. unit simplex S;. It is therefore convenient to take the domain of q;*q
as S; instead of S;. Let {C,,...,C?} be the partition of the collection of all
nonempty subsets of C, such that C; is the collection of all subsets of C, of
size ¢. Because Coles and Tawn (1991) worked with the standard Fréchet
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marginals for G, we here provide the following reformulation of their results,

based on the representation () for G;.
Lemma 1. Let G, be a p-dim. extreme value distribution, which is absolutely

continuous, with equal univariate marginals G; = Q¢ for some £ € R, and let
¢»¢ be the measure densities of @, defined above, where @, is the measure

satisfying (2.4). Let V,(x) = — log G, (x).

(a) V,(x) can be expressed as

p
V,(x) = Z > N (-nP(e; D), 1+¢&x> 0,
i=1CeC;, %Sé%

./ / /’l;ﬂul) (1+§Itl 1/5 Ln’(t =(1+£2:, )l/6

—(i+1)
2 em1 Us Z =1Us a=1

and 7 : {j1 < --- < 5} — {1,..,4} is a function such that =(j,) = s,
forD={ti< - <t} CC={j1<--<j}

where

(b) Forany C = {ji < -+ < 5} C Cp = {1,...,p},

oV,(x) I (L&)t
dz;, -+ 0z {21:1(1 " fzj,)l/f}lﬂ
goC (1 +&z;,)"* (1+ €z, )V¢
b (U €z Ve T (L €y, )V

on{xeR?:1+¢x, >0V e€C and (1+¢&z,)" =0Vm ¢ C}.

3. WEAK CONVERGENCE OF RESCALED TRANSITION
PROBABILITIES

Let {X,} denote a real-valued, k-th order stationary Markov chain. Here,
{X.} being a k-th order Markov chain means that, for every n, the condi-
tional distribution of X, given the past depends only on the k immediate past
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values. Since {X,} is stationary, the distribution of the whole chain is clearly
determined by the joint distribution Fy. i, say, of (X,,..., Xn++) via its suc-
cessive transition kernels. Assume that Fy,; € D(Gy41) for some (k+ 1)-dim.
extreme value distribution G, with equal univariate marginals G; = €) for
some ¢ € R. It is also assumed that both of Fy; and G, are absolutely
continuous. This is quite reasonable since most multivariate distributions are
specified by densities, not by distribution functions. We need some notation:
for: =1,...,k + 1, we write

X; = (321, ...,17,;) S §Ri,

Fi(xi) - F,’(ﬂ?], "'awi) = P(Xn+1 S Zy, ---an-H' < J:i)v
BiF,-(xi)

fi(xi) = m,

and, for j = 1, ..., k, we write

xj+1 - (xlv"'axjij+l) = (xj)mj+l) c %'H-l,
Fj+1($j+1|xj) = P(Xn+j+1 < wj+1l(Xn+17 '-'1Xn+j) = (551: ---»-’Bj)),
fj+1(xj+1)

fi(x;)

Fivr(zjealx;) =

Since the assumption Fy,; € D(Gy,1) implies F; € D(G;), i = 1,...,k+1,
where
Gi(xi) - Gk+1(xi)xc1a "'7xG’1)’
—_———
k1o

we have, foreach i =1,...,k + 1,

1Bt ()
wlizp 1— Fi(u)

= —logG;(x;), 1 +&x; > 0,

from (2.3) with p replaced by :. Taking partial derivatives in these conver-
gences implies possibility of the convergences

g(u)fier(u + glu)zjialu + g(u)x;)

B ((g(u))j“fm(u + g(U)Xj+1)> /((Q(U))jfj(u + g(u)xj))
- 1 — Fy(u) 1 — Fy(u)

51y, ‘ 3V (x;
R ( J+1(XJ+1)> /(_ﬂ) , 1+€Xj+1 > 0, j= 1,...,/€,

Oxy- - 041 Oxy---0x;

319
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as u T zp, where V;(x;) = —logGi(x;), i = 1,....k + 1. If F; = Q, then
g(u) = 1 and so these rescaled transition densities are precisely those appear-
ing in (1.3). We will work with these convergences.

Theorem 1. Let F,,; be the joint distribution function of (X,,..., X,4++)
having a joint density function f, ,; such that Fy .1 € D(G+1) with auxiliary
function g(u) satisfying (2.2), where G, is some (k + 1)-dim. extreme value
distribution, which is absolutely continuous, with equal univariate marginals
G, = ) for some £ € R. Suppose that, for each j = 1,...,k and for every
fixed x; € R with 1 +¢x; > 0,

g(u)firi(u + g(w)z1lu + g(u)x;) — <8i+ Vj+1(xj+1)> /(M) ’

0xq--- 0% O0xy---0x;

(3.1)
14 éz;41 > 0, as u | zp, where 8’V;(x;)/(8z,---0z;) is not zero and
Vi(x;) = —logGi(x:), i = 1,...,k + 1. If, for each j = 1, ..., k, the measure
@;+1 in representation (2.4), with p replaced by j+ 1, for G;,; has a positive,
continuous density only on the interior, and zero densities on the lower di-
mensional boundaries, of S;,, then, for each j = 1, ...,k and for every fixed
x; € % with 1+ £x; > 0, the conditional distribution of (X,,; 11 —u)/g(u)
given

(Xnr1 —u)/g(), o (Xns; — u)/g(u)) = (21, 2;)

converges weakly to a probability distribution on {z € ® : 1 + £z > 0} as
u T zp, and the limiting distribution function is given by

Xnvje1 —
lim P {———Lu <z

Xny1 —u Xnyj —u — (z .
S g(u) < g(u) yaeey g(u) ) —( 1y -eey J)}

_ 6jV7+1 ((1+§xj+1)-l(xj _wj+1))0) a]‘/] ((1""‘6.’1,'_7'4_1)_1()(]' ——CL‘J'+1))
B 8.’E161‘] Bmlazj ’

Proof. Let j = 1,...,k be fixed, and let 1 + £x; > 0. First of all observe
that, from Lemma 1(a) with p replaced by j + 1, we have, for 1 + £z;,4 > 0,

07V, 1(X5, T541)
Oz ---0zx;

:(1)]1

o’ I(C],C ) + (—1)'7 16 I(C]+1,C ) ( 1)j8j1(0j+1;0j+1)

-0z Oz - 0z; Ozy---0x;
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(gt e ( (1 + ;)" )
IR I A S CR S I

e T (1+ g2V
: '/0 {U + 5,0+ §$i)1/§}j+2

o ( (L+ €x,) _ > du

ah wt T (L4 ) Ve u+ T (1 + &z Ve ,

where C; = {1, ...,5}, Cjx1 = {1,...,5 + 1}, and
(1+&x) 18 = (L + &) Ve, s (L4 €27)YF).

Using the fact that

i+l
VJ’(XJ') = Vj+1(xjﬂ$01) = Z Z Z (_l)lDl_‘lI(C;D)’
i=lcec,;, DCC\{j+1}

D#0
we also have
OVi(x;) V(x5 26,)
axl---am]—‘ Oxy---0zx;
_ (_1)j-13j1(0j§0j) N (_1)j—18j1(07+1;cj)
Oz -0z O0zy---0z;
My (L + 620" e, ( (1+&x)"¢ )
_ _ g ,
{ (1t Eﬂii)l/g}]ﬂ AL (1 gz VE
/°° T (1 + &z,)V/e!
’ {u + 3,1+ fiﬂi)l/f}ﬁz
.qj+1vC]+1 ( (1 t+ éxj)l/g U
T Nut DL (U €)Y w o+ T (1 + e Ve
Comparing (3.4) with (3.3), we therefore conclude that

& Vis1(x;,2541) &V;(x;)
( amla.’L'] 31‘133)] T 1aswj+1T‘TG1‘ (35)

We here note that zg, = 0o for € > 0; zg, = —1/£ for £ < 0. On the other
hand, 8V;(x;)/(8z - - - 8z;) has another representation as

PVy(x;) _ TE,(1+ Ee) Ve -j’“( oy ) (3.6)

Oy - - .amj B { f=1(1 + gxi)l/f}j+1 J Z"-—-l(l + ffBi)l/E

) du.(3.4)
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which is a special case of Lemma 1(b), with p replaced by j. From (3.3) and
(3.6), we also conclude that

. 5, ( (1+6x,)!/¢ )
aJ .7+1( ’,1:7+1) 8]VJ(X]) l qj+1 ZJ 1+€x1 1/( as T l (L_x

Oxy - - - Ox; Ozy - - Oz €5 (1+€x,)!/¢ e
: qJ ZJ (1+4¢z,)1/¢

(3.7)
In fact, 25 = —1/¢ for £ > 0; 23, = —oo for £ < 0. Results (3.5) and (3.7)
indicate that the ratio

Vi1 (X, 2541) &V;(x;)
Oz, -+ 0x; Ozy---0z;

as a function of z,, is not in general a distribution function but a subdistri-
bution function on {z;,; € ®: 1+ £z;4; > 0}. The assumption of zero mass
of the measure @Q;,; on the lower dimensional boundaries of S;+1, however,
removes the possibility of this improper distribution. Thus, the ratio is a
valid distribution function of z;,; on {z;,; € R : 1+ ¢z;;; > 0} and its
density function is given by the right hand side of (3.1). Therefore, condition
(3.1) implies that

Fini(u+g(u)zjlu+ g(u)x;)
= [ s@ it gt + glu)x,) de

— (ajvﬁl(xj’xjﬂ))/( 7V (%)) ) 1+€z;41 >0, asu zp
’ J 1 1?

Ozy--- 0z Ozy---0z;

by the Scheffé theorem. Moreover, from representation (2.4) with p replaced
by j, we have

Vi(x;) = (1+ €2500) V(1 + €2500) 7 (x5 — 2541)).
In fact, this property is equivalent to the max-stability of G;. Similarly,

Vier(%5,2501) = (14 €2,00) TV (L + €2500) 1(Xj —z;41),0).

Hence, we arrive at
Xnv1 —u )(n.yj “'M)
yoeeny = (l‘],...,.’L‘:)
( g(u) g(u) ’

) S
P{.__iu_ S zj+1
= Fia(u+ g(u)zlu + g(u)x;)

g(u)

— (81 ((L+ €zjm) H(x; - l'j+1)’0)> /<8jvj((l +&x;01) 7 (x5 — $j+1))>

Ozy---0z; Oxy---0x;
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1+€$J‘+1 >0,aSUTl'F1. |

Remark 1. Convergence (3.5) is generalized into: for any fixed p = 1,...,k
and for any C* = {j1 < -+~ < ji} € C, = {1,...,p},

O Vyr1(Xp, Tp+1) - 8"V, (x,)
Ozj, -+ - Oz, Oz, -+ - Oz,

, 1+ EXP > 0, as Tpi1 T TGy, (38)

which is because, from Lemma 1(a) with p replaced by p + 1, we have

OV, 1 (X, Tpr1)  em 81(C; D)

=y > 2 (=p”
Oz, -+ 0x;, i=i céch,, DcC oz, - 5‘1'],
C-_-)Ew D>C*
AR &I1(C; D 81(C; D
= Z 2 Z (_1)|D| 1 ( ) T Z (_1)|D|—1 ( ’ )
s=i CeCly, | DCO\p+1) bz, -0z, pce Oz, - - - Ox;,
coe* D>C* D>C*U{p+1}
so that
lim ai‘/p+l(xp7mp+1)
1p+1T3’G‘1 BZ'“ 833]1
1 i .
S i) SIS SRS PO
s=i CeCp, DCC\{p+1} 63:1'1 o '81'7}
coet DHC*
ptl

= POED DEEED DI G Vtuy ( (58 2)
87311' 5% s=1CeCl,, DcC\{p+1}
D#0

8i‘/'z>+l(xp’x01) _ Bin( p)
81‘]’1"'81‘]'1 3:1:j1---8z]-1'

Coles and Tawn (1991) developed and summarized several flexible models
for G, .1 in terms of the measure densities. The logistic model and the Dirich-
let model, for instance, fall under the category of Theorem 1. If the right hand
side of (3.2) is not a probability distribution on {z;.; € R:1+4 €z, > 0},
convergence (3.2) is not guaranteed in general. If we however impose addi-
tional mild conditions on convergence (3.1), then convergence (3.2) can be
made still valid. We are going to work with the concept of locally uniform in-
tegrability of the rescaled transition densities. A class of real-valued functions
defined on R is said to be locally uniformly integrable over an unbounded in-
terval A if the class is uniformly integrable over any compact subset of A. For
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example, real-valued functions defined on R are locally uniformly integrable if
they are dominated by a continuous function. Using this concept, we provide
the following theorem.

Theorem 2. Let F,y; be the joint distribution function of (X,,, vy Xik)
having a joint density function f, . ; such that F,.; € D(G+1) with auxiliary
function g(u) satisfying (2.2), where G, is some (k + 1)-dim. extreme value
distribution, which is absolutely continuous, with equal univariate marginals
Gy = Q) for some £ € R. Suppose that, for each j = 1,....k and for every
fixed x; € R with 1 + ¢x; > 0,
itly,, ) PV (x.

(8) 9(u)frrs (utg(w) o lutg(w)x,) — <88 V7+1(X]+1)> /( &’V (x;) > ,
Ty 0T Ozy - Oz;

1+€z;.1>0,asu T zp;

(b) there exists a u}(x;) such that the class
{o()fini(u+ g(u)zsilu + g(u)x;) s uj(x;) <w < zp}
of functions of z;,, is locally uniformly integrable over {z;,; € R :
1 + §$j+1 > 0},

(c) LlTig lTl_m P(X;41 >u+g(u)LX; =u+g(u)x;) =0,

1ulzp;
where 8'V;(x;)/(8z, - --0z;) is not zero, X; = (Xy,..,X;), and V;(x;) =
—logGi(x;), 4 = 1,...,k + 1. Then, for each j = 1, ...,k and for every fixed
x; € R with 1 +£x; > 0, convergence (??) holds, where the limiting
distribution need not be necessarily a probability distribution on {z;,; € R :
1+ ng+1 > O}

Proof. For a notational convenience, we write
IV (x; 'V (x;
lj(l'j+1;xj) — J+1( J+1) J( J) 7
Oxy -+ 0%j1q 0z ---0z;

0 Vir1(xX;41) 8 V;(x;)
Oz, ---0zx; Oxy---0x; )

Now, for each j = 1,...,k and for every fixed x; € R/ with 1 + &x; > 0, let
o, < zj41 < L < zg,. Then

Li(zj41;%;)

Lim [Fiq(u+ g(u)zjeu + g(u)x;) — L(z;11;%;)]

uTIFI
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S L L
< lim / g(u) fivr(u -+ glu)tlu + g(u)x;) dt — / ;(t;x;)dt
UTIFI T;+1 Tr+1

+ lim [Fyo1(u+ g(u)Llu + g(u)x;) — L;{(L;x;)]

uTzFl

= lim |F;.1(u + g(w)Llu + g(v)x;) — L;(L;x;)| (by assumptions (a) and (b))

uszl

lim |1~ Fi(u+ g(@)Llu+ g(u)x;)| + |1 = L;(L; %))l

uTz:pl

IA

Here, letting L T z¢,, we conclude that
Firi(u+ gw)zjlu+ g(w)x;) — Li(z01;%;) as u T g,

from (3.5) and assumption (c¢). The remaining part of the proof is the same
as that of Theorem 1. This completes the proof. O

The functional form of the limiting distribution in (3.2) suggests the ex-
istence of H; of the form in (1.4). Specifically, since

PV (14 €xj1) M (%5 — 2541)) _; 07V;(z;)
= (1 . J J\"J
bz, - oz, (14 €2541) Bz -0z

and

Vi1 ((1+ €2;541) 7 (35 — 2551), 0) _;0Vi41(25,0)
=(1 1) ~
Bz, - - Oz, (L+ €2501) B2, 0z,

where z; = (1+€z;,1) Y(z:—2;41), ¢ = 1,..., §, their ratio must be a function
of

1 — Zj+1 Tj— Zj+l
T4 o, T4 €1
Here, if £ # 0, then, foreach i =1, ..., 7,
$i—$j+1_1<1+§.’ﬂi 1>
L4+ &zjpr E\1+ &z
is again a function of
1+ &z 1+ &z IL+&z;41
U+ €z 1+ €oy " L+ £y

or, equivalently, a function of

1 14 €349 1 1+ &ziy0 1 1+ &z
—log| —— |, = log| ——= | ,...,—log | ——— | .
3 1+ &z, 3 1+ €249 3 1+&z;
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Therefore, we conclude that the right hand side of (3.2) is a function of

1 1+ €xg 1 14+ &z;4q
—log( ) y ey — lOg (————) ,
3 14 €z 3 1+ &z

which is valid even for £ = 0 (recall that £ = 0 is always interpreted as the
limit £ — 0), and so we may denote it as

1 1+ €z
H;, | -1 —=T . .
that is,

(e (52 )
Vi (1 + §$J+1) Hx; - -’fj+1),0)> /(3j‘/}((1 +€2501) (x5 - $j+1))>

( O0zq---0x; Ozy---0x;

o’ VJ+1 Xj+1 07V, (x;)
—_—, 1 i 0,
- O0x; )/(6:1:1'-‘83:j » L&z >

o l 1+ &xy _1_ 1+ &x;
UX; = <§ log (1 +§m1> N log (————1 +£cc]~_1>) .

We here note that H;(y; Vx;) is well-defined on y € R since

where

1 (1+§$J+1

-1
£ o8 1+ &z

)——*OOOI‘—OO

as z;41 1 g, or | =, respectively. If we further denote the derivative of
H;(y; Vx;) with respect to y as h;(y; VX;), i.e

4 |
—H;(y;Vx;), y € R,

hi(y; VX;) = dy

then the right hand side of (3.1) is given by
87 V1 (x541) o7V; (x;)
8£E1"-(9Ij+1 61‘1"'8ij

1 1 1+ &z
SR e | — ], 1 ; 0.
1 _|_ €$j+1 J (£ Og< 1+ §$J > VXJ> + é-xj‘f*l >
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This means that

IV (X541) 07V, (x;)
1 .Y i i i\X
(14 62541) ( dzq - 0% 41 ozy---0x;

is necessarily a function of

1 <1+§x2) 1 (1+§acj+1>

—log youry —log | ————— | .

§ 1+ &z, 13 1+ &x;
It should be noted that, when £ = 0, H; and h; are interpreted as H;(z;.1 —
Z;;%9 — 21y, 8 — 2j-1) and (2501 — 25532 — Ty L5 z;_1) respectively.

According to the proof of Theorem 1, H;(y; VX;) is not in general a dis-

tribution function of y on R, because its mass need not vanish as y — —oo0.
If we however add —oo to the domain of H;, then H;(y; vX;) may be consid-
ered as a distribution function of y on {—o00} U R, where it has an atom at
y = —oo and is absolutely continuous on R, having h;(y; VX;) as its density
there. The mass of the atom is given by the right hand side of (3.7). Theorem
1, therefore, says that the assumption Fyy € D(Gy+1) implies convergence
(3.2) under condition (3.1) when H;(y; VX;) has zero mass at y = —oo0. Oth-
erwise, that convergence is not in general guaranteed though the convergence
can be made still valid with additional conditions as in Theorem 2. What
happens if F,,; is itself a multivariate extreme value distribution? The fol-
lowing theorem tells us that if Fi,, is itself a multivariate extreme value
distribution, then both of convergences (3.1) and (3.2) are valid, provided
that 87V, (x;)/(8z; - - - 0z;) is not zero, whether H;(y; 7x;) has zero mass at
y = —oo or not. This will be proved directly using the max-stability of Fri1.

Theorem 3. Let F,.; be the joint distribution function of (X, vy Xovk)
having a joint density function fi.;. If F.,1 is itself a multivariate extreme
value distribution with equal univariate marginals F; = § for some ¢ € R,
then, for each j = 1, ...,k and for every fixed x;,; € R+ with 14 £x;41 > 0,

and

g(u) fiv1(u + g(u)z;irlu+ g(u)x;)
Xt —
P {_LZLI__E <z

(Xn+1 —Uu Xntj — U) o ( )}
g(u) o) 7 gy )

are convergent as u | &, ; moreover, their limits are given by

1 1 1+§$J’+1 1 1+£$j+1
_ h210g [ EEEEHL) x| and H; | = log | ———2 | 5w
1+ 62,0, (g °g< 1+ €z, ) vXJ) an J(g °g< Tt éc, ) VO
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-dz;) is not zero, where g(u) =

respectively, provided that 9°V;(x;)/(dz
=1,. /c + 1. Here, H;(y; vx;) may have

1+ éu and Vi(x;) = — log F; (xz)
possibly a positive mass at y = —00.

Proof. First of all observe that the max-stability of F,_; (or, equivalently,
representation (2.4) with p, G, replaced by k + 1, Fy.,4 respectively) implies
that

F:+1(7’L5Xk+1 + (TLE - 1)/5) = Fk+1(Xk+1), n = 1, 2, ceny

for every fixed x,4; € R*"' with 1+ ¢x,4; > 0, which means F,,; € D(Fyi1)
by the definition of multivariate domain of attraction. Thus (2.3) holds, with
p, G, replaced by k + 1, iy respectively. When ¢ = 0, the validity of the
choice g(u) = 1 follows from the fact that F; = €, the standard Gumbel
distribution. In view of Theorem1, this implies plausibility of convergences
of the proposed forms of rescaled transition kernels. In fact, notice that, for
eachi=1,...,k +1,

8iFi(Xi) 8iekv’(x’)

fi(Xi) - 6:1:1 . -a.’L‘i - 651)1 [N 8:37;
- 8'Vi(x:) o OVi(x;)
v |- 2TV () X
’ 3131"'5'93¢+ * )31;11 oz,
e~ Vi(x:) Z > <8ID3'V1-(X1') 8|D?|1/;(xi))
m=1 {D},..,Dm™} HS‘ED} 8:{:3 HsED:" 81173 ’

where {D/,...,D"} varies on the partitions of {I,...,4} such that each of
D}, ..., DT contains at least one element. Thus, for each fixed i=1,...k,

g(u)fis1(u+ g(u)x;41)

= g(u)exp{-Vji1(u + g(u) X1+1}Z( 1"

> (2 o) 37Tt o
) HseD]l+1 O(u + g(w)z,) H3€D;“_H O(u+ g(u)z,)

m
(D!, ,...D"

Here, notice that, for every r = 1,...,m,

87 (u+ g(u)x;e1) 07,105 Vi (u + g (w)xj41)
= (g(u))""ow
HseD;_H (9('& + g(u)ﬂ%) HseDH_l 6$s

and that |D},;| +---+ [D7.,| = j + 1. Moreover, since F;,, is also a mul-
tivariate extreme Value distribution, its max-stability lmphes that, for any
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t >0,
Vi (85%500 4 (85 = 1)/6) =t Wi (X541), 1+£6x;01 > 0.
Taking t = (1 + &u)V¢ > 0, we have

Vj+1(u + Q(U)Xjﬂ) = ‘/j+1(t€xj+1 + (tE - 1)/5) — t_leH(xjH)

= (1+&uw) V1 (x541), 146%,51 > 0,

since g(u) = 1+€&u. Applying these to the expression of g(u) f;+1(u + g(u)x;41),
we have

g(u)fie1(u + g(u)x; 1) .

= (Q(U))_j exp{—(l + 5“)_1/5‘/j+1(xj+1)} Z (—1)m (1 + fu)_m/s
m=1
Z 6|DJ1+1|V],+1(XJ_+1) N 6|D17n+1iv}+1(xj+l)
b7} HaeD}+1 Oz, HseD;"+1 oz,

>, 1 +§Xj+1 > 0.

(3.9)

Similarly, one can show that
fi(u+ g(u)x;)

= (g(u))fjexp{ (14 €&u) 1/5V (x; } ZJ: ™(1+ &u)” m/E

1

m

> 8'P; Vi (x;) a'D V;(x;)
} HseDj Oz, HaEDy‘ Oz,

) 14¢x; >0, (3.10)

The functional forms (3.9) and (3.10) guarantee the existence of the limit
L (25415 %;), say, of

g(u) fiv1(u+ g(u)x;41)

g(w)fia(u + gw)z;elu+ g(u)x;) = fi(u+ g(u)x;)

as u | zp,, where I;(z;:1;X;) could be oo identically. However, from the
Fatou lemma,

oy . TF
/. e xg) dee < Lm0 g(u) i (utg (@) lutg(u)x;) des = 1,

.
| ulzp, T,
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which implies that I;(z;,1;x;) is finite for almost every z;,; € ® with 1 +
€z;+1 > 0. In view of the almost everywhere uniqueness of the conditional
density function, an appropriate choice of that makes !;(z;:+1;x;) finite for
every fixed x;,1 € R with 1+£x;,; > 0. Therefore, the rescaled transition
densities
9 fi1(u+ g(w)zjiifu+ g(u)x;), 7=1,...,k,

converge to finite limits as v T zr, . Moreover, if 8V;(x;)/(8z - - - 8z;) is not
zero, then it is obvious, from (3.9) and (3.10), that

Vi1 (x541) 0°V; (x;)
sgates gt stos) - () [ (I

as u T zp,. For the convergences of the rescaled transition probabilities, we
can similarly show that, for each j = 1, ..., k,

P{Xn+j+1_u . (XnJrl—u Xn+j_u> = a:)}
IO A T R TO N A
= Bt g@anlut o) = [ g f(u+ o)t + g(w)x,) de

1

u+tg (u)xj‘l"l
= [ fra (tle + gu)x;) dt

3t
( e~ Vit (utg(u)x;41) > /( 57 e~ Vilutg(u)x;) )
— \9(u+g(u)zy) - O(u + g(u)z;) O(u+ g(u)zy) - 0(u + g(u)z;)
+e(u;x;)
Ar(u;Xj41)
' 7 1X:), 1 . > 07
A () + c(u;x;), 14 €x541
for some function c(u;x;), where
J
Ar(uixjen) = exp{—(1+§u) YOV (%41 } Z (1 + gu)™ /¢
PEHLY , 827y, .
. Vi (X541) o G+1(X541)
{Dl ____ Dm} HSED]I am‘? HSEDT 6$8
and

Ag(usx;) = exp{ (14 ¢u) VeV, xJ}Z( D™ (14 fu)™™/¢

T 8'73V;(x;) 3PV(xy) .
D™} HsGD; Oz, H36D;" oz,
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Here, notice that, by (3.8), A1(u;X;41) — Ag(u;X;) as 241 T 2, from which
¢(u;x;) must be zero. Also, the functional forms of A; and A, indicate that
their ratio A;(u;x;,1)/Az(u;x;) is convergent as u T zr,, and moreover, its

limit will be . ,
07 Vj1(X541) 07V;(x;)
O0zq -+ 0x; Ozy---0z; ’

provided that 8°V;(x;)/(dz; - - - 8z;) is not zero. O

4. EXAMPLES

Example 1 (Logistic model). Let {X,} be a k-th order stationary Markov
chain in which F, . follows the law of the logistic model with parameter r > 1,
i.e.,

k+1 1fr
Fei1(Xes1) = €Xp —(Z e””‘) , Xpiq € RETL (4.1)
s=1

Tawn (1988) and Smith (1992) dealt with applications of this multivariate
extreme value distribution. Using the fact that every lower dimensional
marginal distribution function F;(x;) (i = 1,...,k + 1) is of the same form
as (4.1), one may get the explicit form of the corresponding density f; (x;).
In fact, it can be shown by induction on i that f;(x;) is given by

fz'(Xi) = eXp (—T‘ ZQ:‘Q) F.L‘(X,') Zais(Vi(xi))iH_a'”, X; € %i, (42)
s=1 s=1
where V;(x;) = —log F;(x;) and the coefficients a;, are determined by the
recursive formula:
an =1, a1 =0, t=1,...,%
ags =ap 1.+ {t=r+s—t—1}ai1,1, 8 = 2,..,t.
Since F; = Qg and g(u) = 1, we examine the convergence of f; 1(u+z;41]u+

X;), X541 € ®IYL, j =1,..,k, as u — co. Observe first that, from (4.2), we
have

firr(ZialX;) = exp [-Vj(xj) {(1 + V(- fﬂj+1))1/r - 1” Vi (x5 - zin)

. r (s+1)/r—(G+1)
2Ya=0+1,41-5 V5 (’9‘)(1 + V(x5 - ”3:'+1))

ZZ;(I) Qji-s V_f9 (xj)
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Thus,
u].ir& fj+1('u + IZJJ+1|U + X])
= uliﬂ()l() [‘/;_T(X] - .’I,‘j+1)
) . . {s+1)/r—(j+1)
>le=0@+1,5+1-5 Vi (u t Xj)<1 + V(x5 - $j+1)>

Yo ajj-a Vi (u+x;)

@i415+1 . . Ureset
= JJ;'{+ -V, (xj—xj+1)<1+Vj (Xj—mj+1)>
i3
j 1/r—j-1
jr—1 1
Zi:l er(zj+1—2,) ( + Eizl e?’(x1+1—zs)> (4 3)

since ay; = [[.2}(sr — 1). Similarly, it can be checked that
P(Xn+j+1 < $j+1|(Xn+1, ---,Xn+j) - (3317 ---7371‘))
_r 1/r
— exp [—vj(xj){(uvj (x; — 2;41)) —1”

. s _r (s+1)/r—3j
1050V (Xj)<1 + Vi (x; - -’Ej+1))

S0 a5 V(%)

from which we have

lim P(X,t;501 < ut 201 (Xnsts oo Xnaj) = (w21, oy u + 25))

u—00

. 1/r=j 1 Hrd

J -
Es:l er(xrf‘l Z-ﬂ)

The derivation of (4.3) and (4.4) is somewhat complicated. One may instead
apply Theorem 3 to obtain the same results using the formula

v i . ¢ q 1/r—i
%:_{H(Sr*l)}exp <_7.;x8> (;e‘r“) |

s=1
which is a lot easier.

Example 2 (Dirichlet model). This model was introduced recently by
Coles and Tawn (1991) in terms of the measure density a>%, of Q; on the
interior of S; (i = 1,...,k + 1), defined by

T( i
! (Za) H 'U)ghl, w,; = (wl,...,wi) S Si, a > 0,

@ W) = ey U
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where C; = {1, ...,i} and

Vi(x;) = — log Fi(x;) = S {gg (wse ) dQ:(w;), x; € R".

Let {X,} be the corresponding k-th order stationary Markov chain. They
derived the explicit form of Fy(zy, z5), but it is intractable to obtain a compact
form of F;(x;) for i > 3. However, since Fj,1(Xx+1) is a multivariate extreme
value distribution with equal univariate marginals F; = )y, the convergences
of the corresponding rescaled transition kernels are guaranteed by Theorem
3 without knowing the explicit forms of f;(x;), ¢ = 1, ...,k + 1. In fact, from
Lemma 1(b), foreachi=1,....,k + 1,

6i‘/i(xi) B _exp (Zizl 1:3) ' i,C,( &%l e >

T 71 5 IR, ey
ozy--- 0z, ( ::161,> Dg=1 €% =1 €™

3 il'(ia) _EXp (a Yio l‘s)
(F(a))i (Zizl eh)ia+1 .

Therefore, for each j = 1, ...,k and for every fixed x;,; € ®*!,

Iim fia(u+ 250lu+x;)
= hj(z;41 = 25 VX;)

_ (1 n 1) [(a + ja) ' exp(az;i1) {1+ emJ—H}-(jﬂ)a_l
i) T(e)T(ja) ( j:1€x’>a

and

UILI{.IO P(Xn+j+1 <u +$j+1|(Xn+l7--'7Xn+j) - (U+$1,---au + ’J"J))

= H;(z;41 — 2, V%),

where H;(y; Vx;) is the distribution function of the random variable

7 1
Y = log E e " | —log <— - 1) ,
s=1 Z

with Z ~ Beta(a, ja + 1).

Example 3 (Multivariate t-distribution). Let {X.} be a k-th order
stationary Markov chain in which Fy; is a multivariate t-distribution with
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parameter v (v: a positive integer), which is defined by its density f,. as
(see Johnson and Kotz (1972), page 134):

—(v+k+1}/2
. D((v +k+1)/2) P,
frer () = (wv) =120 (1 /2) L4y z_::cf » Xer € R

Here, the univariate marginal Fy is the t-distribution with v degrees of free-
dom so that F; € D(Q,-1). Yun (1994) showed that Fy+; € D(Gi+1) where
G .1 is given by

Vir1(Xe+1) = — 1og Giei1 (Xe+1)

k1
= Z +v7le) T 4 S (=DPT (D %), 1+ v e > 0,
Dc{i,....k+1}
|D|>2

where
'((v+7)/2)
(vv/m) 1T ((v + 1)/2)
—(v+r)/2

L),
Ty i Le=1

for D = {i; < --- < i,} C {1,....,k + 1} with » > 2. It should be noted that
the auxiliary function g(u) = 1+ £u in (2.2), for £ > 0, may be replaced by
g(u) = &u with no distortion in the whole story of this paper. In this example
we work with g(u) = v~ !u, which then saves our labor for the complicated
algebraic computations. First of all observe that, for each j = 1,...,k and for
every fixed z;,...,2; > —v,

Jk+1(D§Xk+1) =

lim v tufig(u+ v ug el + v lux;)

uU— 00

~1/2 Y
_ F((u+j+1 Z(1+V 1+ (1+y—1g;j+1)2 } (v+i+1)/2
v/l ((v + j) z0) I (14 v12,)?

1 1 j

1+vlz; 1+ v lg;

Here, notice that 2h;(y; x;) is the density function of the random variable

14

- Zlo s=1(zs +v)
Y_ng{(wﬂLV) (1/2—1)}’
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where Z ~ Beta(1/2, (v+3)/2). In other words, h;(y; VX;) gives a total mass
1/2 on R, and so we apply Theorem 2. In fact, for any fixed u* > 0,

uflufjH(quu*1u$j+1|u+u71uxj)
. ) — _ : B (v+37)/2
SN2 (4 g+ 1)y2) (@) TSy g )2}
= P ; ' ; 1/2 .
VAL /D {5t} @ vt

T4 > —V, U > U,

b

which verifies conditions (b) and (c). Therefore, by Theorem 2,

. Xntjr1 — U Xnt1—u Xn+j —u
tim P { T < (2 T ) = )
1 +u'la:j+1
= H; (V log <m s VX |y Zjer > Y,
where

H;(y;7x;) = 1 —/ h;(t;7x;)dt, y € {—o0} UR.
Y
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