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ABSTRACT

This paper suggests a new diagnostic measure for detecting influen-
tial observations in two group linear discriminant analysis(LDA). It is
developed from an information theoretic point of view using the min-
imum discrimination information(MDI) methodology. MDI estimator
of symmetric divergence by Kullback(1967) is taken as a measure of
the power of discrimination in LDA. It is shown that the effect of an
observation over the power of discrimination is fully explained by the
diagnostic measure. Asymptotic distribution of the proposed measure
is derived as a function of independent chi-squared and standard nor-
mal variables. By means of the distributions, a couple of methods
are suggested for detecting the influential observations in LDA. Per-
formance of the suggested methods are examined through a simulation
study.
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1. INTRODUCTION

Recently, Critchley and Vitiello(1991) and Fung(1992) independently pro-
posed two fundamental statistics, say dfj and @ij, in Fisher’s linear discrimi-
nant analysis(LDA), like the residual and leverage measure in regression, on
which many influence measures depend. By means of the fundamental statis-
tics, Critchley and Vitiello(1991) examined the influence of observations upon
misclassification probability estimates in LDA and Fung(1995) suggested a
couple of Cook’s type (Cook, 1977) diagnostic measures for detecting outliers.
In addition to the studies, many articles have been published on detecting
outliers and influential observations in LDA. See, for example and for further
references, Campbell(1978), Radhakrishnan(1983) and Johnson(1987).

The studies mentioned above are based on either sampling theory ap-
proach or Bayesian framework. The present paper considers, however, an in-
formation theoretic approach for detecting the influential observations. Kull-
back(1967) and Kim(1995, 1996) discussed using the information theoretic
approach in discriminant analysis. A brief review of the use of symmetric
divergence by Kullback(1967) as a measure of the power of discrimination in
LDA is given in Section 2. Based upon the power of discrimination, Section 3
proposes a diagnostic measure for detecting the influential observations which
can be expressed in terms of the fundamental statistics, d?j and 1[3“, In Sec-
tion 4 an asymptotic distribution of the diagnostic measure is derived so that
one may construct critical values and expected quantiles of the measure. In
Section 5 the performance of the proposed measure is examined through a
simulation study. A few concluding remarks are given in Section 6.

2. POWER OF DISCRIMINATION
Suppose we have two p-variate normal populations II; ~ N,(u;,2), with

i, ¢ = 1,2, the p mean vector and ¥, the common covariance matrix. De-
noting the respective population densities by

1
fiz) = 275" Peap{—3(z — w) T (& — w)},

we find the Kullback-Liebler cross entropy between the two populations(cf.



On a Diagnostic Measure for LDA
Kullback, 1967), IT; and II,, as
fi(z)
I(1:2) = z)In dz
) = [rE@mze
1 e
= 5(#1 — p2)'E 1(Ml — p2)- (2.1)

As suggested in Kapur and Kesavan(1992), to measure the power of dis-
crimination between the two multivariate normal populations with the den-

sities f1(z) and fa(z), one can use the measure of symmetric divergence by
Kullback(1967):

J(1:2) = 1(1:2) + 1(2:1) = (1 — p2)'E7" (b1 — pa). (2.2)

Definition 1. Let N,(u1,Y) and N,(ug,X) be distributions associated with
the p vector random variable X from the populations II; and I1;, respectively.
Then the power of discrimination between the two populations is

J(1:2) = (1 — p2)'T™ (w1 — p2).

Let us consider a transformation Y = o'X. Then the power of discrimi-
nation based on Y is given by

02 = oSG + [ e
= d'66'a/a'Sa, (2.3)

where 6 = (1 —p2) and ¢;(y) is the pdf of N (o/p;, 'Y a) distribution, s = 1, 2.

Lemma 1. Fisher’s linear discriminant function(LDF), i.e. the transforma-
tion Y = (ug — p2)' L1 X, is sufficient in a sense that the transformation has
no effect on the power of discrimination, i.e.

J(1,2:y) = J(1:2) = §B716.

Proof. It can be shown from the Cauchy-Schwarz inequality that

1661
J@Zw):azagJUﬂ):yY%,

.
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where the equality holds for o = £16. Therefore the transformation ¥ =
§Y 1 X leads to J(1,2:y) = J(1:2) = (1 — p2)'S Ny — pa).

Above lemma notes that, with regard to the power of discrimination, LDF
is the best linear discriminant function of random vector X associated with
I1; and IT;. Since J(1,2 : y) is additive for independent random variables, we
have for a random sample of n observations, O,

J(1,2:94,0,) = nJ(1,2:y) = né&'S71s. (2.4)

When the parameters p;, po and ¥ are unknown, we take the conju-
gate distributions of II; and II, with parameters the same as the respec-
tive observed best unbiased sample estimates of the unknown parameters(cf.
Kullback, 1967). This leads to so called minimum discrimination informa-
tion(MDI) estimator of LDF and that of the power of discrimination. Fol-
lowing definition summarizes the MDI estimators.

Definition 2. Suppose we have n; observations, {X;}, j = 1,...,ny, of the
multivariate normal variate X' = (zi,...,z,) from II; ~ N,(u1,%) and n,
measurements, {Xs;}, j = 1,...,ng, of this quantity from IIy ~ N,(us,X)
withn > p+ 2; n = ny + ny. Then MDI estimator of LDF is

Y = &X = (X - X,)S7'X,
and that of the power of discrimination obtained from LDF is
nJ(1,2:y) = n(X, - Xo)'S (X1 - X,), (2.5)
where X, and X, are respective sample mean vectors of II; and II,, and S

denotes the pooled sample covariance matrix.

It is shown that the estimated linear discriminant function obtained by
maximizing the power of discrimination is equivalent to that of Fisher’s LDF.
Therefore, a diagnostic measure for the linear discriminant analysis suggested
in the sequel via information theoretic approach(using the power of discrim-
ination) may as well apply for Fisher’s LDF.
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3. DIAGNOSTIC MEASURE

If X;; € R? denotes an observation from I1;, the well-known Fisher’s(sample)
LDF is to allocate an observation X;; to II; if the prior quantity log(q;/q2),
say, plus the linear discriminant score is

(%1 = X)Xy — 5(K 4 K)} = 5~

2 2% 2

where dZJ = (X;; — Xx)'S™YZ — X,), k = 1,2. When i = k, d?J is interpreted

as the atypicality of observation X,; from population II;. Another statistic

that is the difference between the discriminant score of X;; and that of X;,

say residual of X,; is given by ¥;; = (X; — X3)’S 1(X;; — X;). These two

statistics, 1/31- ; and ij, are said to be the two fundamental statistics in LDF(see,

Fung(1992) and Critchley and Vitiello(1991)). In this section we will derive

an information theoretic diagnostic measure that can be ertten in terms of
the two fundamental statistics.

Suppose we are interested in the effect of the omission of an observation
j from II;(or I13) on the power of discrimination. One may study it through
the estimated loss in powers of discrimination due to the omission of an
observation j from I1;, i = 1,2:

d?j > 0,

Loss;; = nj(1,2:y) - (n-—l) (1,2:y),i=1,2, j=1,...,n;, (3.1)

where (n — 1)J;;(1,2 : y) is the estimated power of discrimination when an
observation j is omitted from the training sample of II;.

Theorem 1. In two group discriminant analysis, effect in Loss;; due to omis-
sion of an observation j, say X;;, from II; ~ N, (p;, %), i =1,2;j=1,...n
is determined mainly by

('%Z)ij - /\f1)2

Mi’ — ~ 32
T (- DA - d 32

where A\; = n; /(n1 +ng — 2), and by = (X1 — X9)'S™'(Xy; — X;) and d?] =
(Xi; — X:)'S™Y(X;; — X;) are the two fundamental statistics.

Proof. Definition 2 notes that, when we use LDF, the estimated power of
discrimination between I1; and Il; is given by

nd(1,2:y) = n(X; — X2)'S™HX| - X3). (3.3)
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Assume, for convenience, that observation j is deleted from training sample
of II;. Then X, and V; are unaffected while X; and V; change to X; — (n; —
1)7'A; and Vi ~ {1+ (n; — 1)"1}A; A}, where A; = (X;; — X,), and V; and
V, are sample corrected sums of squares and cross-product matrices so that
S=V/(n—-2); V=Vi+Vy, n=ny+ny Let (n —1)Jy;(1,2 : y) be the
estimated power of discrimination when an observation j is omitted from the
training sample of II;, then

Ji(1,2:y) = (n=3)6,(V —n1AsA]/(ny — 1)1y,

_ n — 3'~,. S_l n /\IS'IAlA’IS"l/(nl — 1) 5 '
m—E 1= MAS A (n - 1))

n—31 -
= J(1,2: -

n —

1 + ($1; = A7)
Ar(ng — 1) (ny — AT — d%j ,

where 6;; = (X; — X3 — Ay/(ny — 1)). Thus Loss,; is given by

(n=3)n—1) [ D*2n-3) 1 (1 = A1)’

-2 |G-9e-D N oo [ Y

where D? = (X; — X3)'S™ (X — X3).
Therefore, the deletion of X,; effects Lossy; only through the last term of
(3.4). Similar proof holds for the deletion of an observation j from II,.

Diagnostic measure M;; in (3.2) shows that O (n™!) effect of 4;; dominates
the O(n~2) effect of d?;, and that ¢;; can vary independently of d?,. There-
fore, Theorem 1 notes that, to detect influential observations over the power
of discrimination, we need examination of M;; rather than separate examina-
tions of the two fundamental statistics. Theorem 1 also tells us that, other
things being equal, the improvement in the ratio upon deleting an observation
increases (i) with larger value of lq/?ij — A1, and (ii) with increasing dfj

Noticing that the difference in the power of discrimination between before
and after omitting X,; isnJ(1,2:y) — (n—1)J;(1,2:y), we have following
result.

Corollary 1. M;; > 0forall:=1,2, j=1,...,n,.

Proof. It can be easily seen that positive definiteness of the pooled sample
covariance matrix under such perturbation leads to dfj < Alm—-1), i =
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1,2; j =1,...n; because |S — MA; AL/ (ny — D] = [S|(1 — MALSTA/(n; —
1)) > 0. This gives the result.

Corollary 2. Gain in the power of discrimination occur when the deletion of
X; results in

1 D%*(2n -3
M;; > + (n )

N =D oDy TR ITheane ()

Proof. The condition nJ(1,2 :y) — (n —1)J;;(1,2 :y) < 0 and Corollary 1
give the result.

The inequality (3.5) indicates that the lower bound of M;; can be used as
a criterion for detecting influential observations upon power of discrimination
in LDF.

Corollary 3. The diagnostic measure M;; is invariant with respect to linear
transformations.

Proof. Let W;; = AX;; +b,;¢ = 1,2;5 = 1,...,n,, for some nonsingular
A:pxp b:px1 Then W;; ~ N,(Au; + b, AXA’). Hence, if dfj and &j
based on W/, s are respectively denoted by

d?J(W) = (Wij—Wi)IS;,l(Wij—Wi) = (AX.;j—AXi),(ASA’)_I(AX."J'—AXZ') = dAZZJ
and
$i; (W) = (Wi =Wa) St (Wi —W,) = (AX1—AXy) (ASA) HAX,;—AX:) = ¥y;.

Thus M,; which is a function of the two invariant statistics is invariant.

It is well known that Mahalanobis generalized distance D? is invariant
with respect to the linear transformations. Thus, it is straight-forward to
show the invariance of the estimated loss in powers of discrimination defined
in (3.1).

4. ASYMPTOTIC DISTRIBUTION OF THE DIAGNOSTIC
MEASURE

It is clear from (3.2) that the proposed measure is a function of the two
fundamental statistics, v;; and d?;. Thus the following lemma by Fung(1995)
is useful for deriving the asymptotic distribution for the measure A;;.
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Lemma 2(Fung, 1995). When an observation X;; is omitted from II; ~
N,(ui, T), the statistics d?, and ¢;;/D are asymptotically distributed as

d’?j = U ~|—22 and ’l/;.;j/D = Z,

where U and Z are independent and are distributed as xg_l and N(0,1),
respectively, i = 1,2, j = 1,...,n;, and D? converges almost surely to (u; —
)’ Sy — pa).

Based upon the asymptotic results of the above lemma, one could ob-
tain approximate expected quantiles for quantile-quantile(Q-Q) plot for the
diagnostic measure.

Theorem 2. If an observation X,; in M;; is from II; ~ N,(u;, %), the quantiles
mr of My k =1,...,n; ¢ = 1,2, can then be approximately obtained by
solving

a;

._.____a _ 1/2 1/2
E |:q) {D2 + 7 +Q(nsz 71'/,;) } o {m - q(ni,U,ﬂ'k) }} (41)

(k= 1/2)
= P
where a; = )\i—lD, Q(’)’Li, U, ﬂ'k) o ﬂ'k{/\i_l(ni—1)'—U'—A;2/(D2+7Tk)}/(D2+ﬂ'k),
the expectation is with respect to U with distribution x2_;, and ®{-} denotes
the df of N (0, 1).

Proof. Lemma 2 notes that the asymptotic distribution of M;; is the same
as the distribution of function of the first and second power of U and Z, i.e.

(DZ — A1)’
A Hn; — 1) — (U + 22)

7

(4.2)

Mz'j ~

Thus the quantiles 7, for M;; are evaluated as
P(Mi; <m) = P(1Z —a:/(D* + m)| < q(ni, U,m)'?) = (k= 1/2)/n..

This gives the result.

Expressing (4.1) through the integral with respect to the densities of U
and 7, we have

a; /(D% 47 )+q(ng,u,mg )2 k—1/2
/ /a ¢(2)dz f(u)du = (—-—L), (4.3)

J (D247 )—g(ngu,my )12 n;
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where g(ni, u, m,) = T {A7 (ni = 1) —u— A2 /(D? + )} /(D* +7i), and f (u)
and ¢(z) are respective pdf’s of X,2;—1 and N(0,1). The expected quantiles
7, can be evaluated through a numerical integration using Simpson’s rule.
The observed quantiles for M;; can be plotted against the expected quan-
tiles for detection of influential observations over the power of discrimination.
Moreover, using the Bonferroni inequality, we may approximate the 100a%-
critical value C, (i) for the maximum value of M;; over i-th training sample
points as

p(M;; <C,(3) = 1—a/n;, i=1,2. (4.4)

C, (i) can be also evaluated by the Simpson’s rule.

5. PERFORMANCE OF THE MEASURE

In the previous section, we have derived two devices for detecting influen-
tial observations based on M;;; (i) the approximate expected quantiles (4.1)
for Q-Q plot of M;;; (ii) the approximate critical value for the maximum value
of the measure in (4.4). It is shown that performance of the two devices are
directly related to the accuracy of the approximation in (4.1). The accuracy
is examined through a simulation study to see whether the use of the two
devices are adequate for detecting influential observations over the power of
discrimination in linear discriminant analysis.

Corollary 3 notes that M;; is invariant with respect to a linear trans-
formation. Thus, without loss of generality, our simulation generates, n; =
ny = 50 independent observations from each population; II; ~ N,(0,7) and
Iy ~ N,(6,I), where § = diag{éy,...,6,}. For each set of parameter values
of {p,61,...,6,}, the M;; values are obtained and ordered for each repeti-
tion. It can be easily seen that, in case ny = ng, the asymptotic distribution
of M;; is the same for i = 1,2. This is due to symmetry property of M;;.
For the examination of (i), the order statistics are averaged over the 10,000
repetitions of the simulation. For each case of the parameter values( Case 1:
p =36 =1¢¢=1,23, and Case 2: p = 3,6, = (—1)*,¢£ = 1,2,3), these
expected quantiles are plotted against those obtained using (4.1) in Figure
1 and Figure 2. The figures show that the approximate expected quantiles
obtained by (4.1) are remarkably accurate. This confirms us that the Q-Q
plot of M;; is a useful exploratory tool for detecting influential observations.
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The plots based on other set of parameter values give the same results as
Figure 1 and Figure 2, and hence they are exempted from the figures.

For the examination of (ii), the critical values for the maximum values of
M,;, df] and zﬁij /D obtained by the same simulations with 10,000 repetitions
and the approximations(exploiting (4.1) and Lemma 2) are given in Table 1.

Table 1. 1%, 5% and 10% critical values for the maximum values of the

1%
5%

10%

measures
Case 1 Case 2

My dy (¢y/D)* My dY ($y/D)?
Simulation 853 19.03 13.98 242 19.03 14.21
Approximation 8.72 19.26 14.09 248 19.26 14.09
Simulation 3.49 16.33 11.73 094 16.23 11.14
Approximation 3.31 16.45 11.44 0.92 16.45 11.44
Simulation 2.51 16.62 10.53  0.68 16.03 10.53
Approximation 2.44 16.23 10.83 0.70 16.24 10.83

L~ -

Figure 1. Q-Q plots of M;; for Case 1 {asymptotic(horizontal axis) versus

simulation(vertical axis)}.
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Figure 2. Q-Q plots of M;; for Case 2 {asymptotic(horizontal axis) versus

simulation(vertical axis)}.

Figure 3. Q-Q plots of M;; for the illustration {Expected(horizontal axis)

versus observed(vertical axis)}.
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As an illustration, for Case 1, we generated 49 and 51 independent observa-
tions from II; and II, respectively. Then we put the first observation(lebeled
with index 51) generated from Il into the sample from II;, so that we may
have n; = ny = 50 observations to obtained the Q-Q plot for M;;.

The Q-Q plot for M;; is given in Figure 3. As expected the observation-
lebeled 51-has M, 5; = 3.19787 and stands out from the others. It seems that
the Q-Q plot successfully reveals the influential observation. It is also noted
from Table 1 that the suggested measure for observation 51 is larger than the
corresponding 10% critical value for maximum M,;.

6. CONCLUDING REMARKS

We proposed a new diagnostic measure for detecting single influential
observation in LDA. When we apply the measure sequentially, it could also
be useful for identifying multiple influential observations. The measure is
developed from an information theoretic point of view using MDI estimator
of symmetric divergence by Kullback(1967) that can be taken as a measure of
the power of discrimination in LDA. Asymptotic distribution of the proposed
measure is shown to be a function of independent chi-squared and standard
normal variables. Based on the asymptotic distribution, we proposed a couple
of methods(Q-Q plot and critical value of maximum value of the measure)
for detecting an observation that deteriorates the power of discrimination
in LDA. The simulation studies in Section 5 confirm us that the suggested
methods are useful tools for detecting the influential observation.

The proposed measure can be easily extended to detect multiple influen-
tial observations in blocks avoiding the masking problem(cf. Rousseeuw and
Zomeren, 1990) and to detect influential observations in multiple discriminant
analysis. A study pertaining to these problems are left as a further research
topic of interest.
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