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On Convergence in p—Mean of Randomly
Indexed Partial Sums and Some First
Passage Times for Random Variables Which
Are Dependent or Non—identically
Distributed
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Abstract

Let S,,n = 1,2, .- denote the partial sums of not necessarily in-
dependent random variables. Let N(¢) = min{n;S, > ¢}, ¢ = 0.
Theorem 2 states that N (c), (suitably normalized), tends to 0 in p-
mean, 1 < p < 2, as ¢ — oo under mild conditions, which generalizes
earlier result by Gut(1974). The proof follows by applying Theorem
1, which generalizes the known result E|S,|? = o(n),0 < p < 2, as
n — oo to randomly indexed partial sums.
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1. INTRODUCTION

Let X1, X3, - - - be a sequence of random variables, let S, = X; +---+ X,,,
and for ¢ > 0 set N = N(c) = first n > 1 such that S, > ¢. We set
Fo=0{X;,1<i<n}, n>1, and Fy = {¢,Q}. Pyke and Root (1968)
prove the L,—convergence for n"1/?S., 0 < p < 2, for sequences in the i.i.d.
case. The result was extended by Chatterji(1969) to martingale differences
under some domination condition.

Chow(1971) relaxes the domination condition to uniform integrability. Re-
cently Chandra(1989) and Gut(1992) prove the theorem under the condition
of uniform integrability in the Cesdro sense which is weaker than uniform
integrability. Gut(1974), inspired by Chow(1971), proves a corresponding re-
sult for stopped random walks for a sequence of i.i.d. random variables and by
applying this he proves ¢! - E[N —c/u|P - oasc— o0 if E|X|P <00, 1<
p < 2. Chow and Robbins(1963) prove that if E(X,|F, 1) = EX, = un,
Hm, o (p1+ - pn)/n=p, 0<p<ooand E(|X, — pa|*|Faci) <K < 00
for some o > 1( for the independent case, this is replaced by the assump-
tion that {X, — EX,} are uniformly integrable) then lim,_, ., EN/c = 1/p.
'The purpose of this paper is to generalize results in Gut(1974) applying
Chow and Robbins’(1963) result with the same scheme as Chandra(1989)
and Gut(1992).

2. RESULTS

Let | X|| = sup{ea : P{|X| > a} > 0}, where X is a random variable.
Definition 1. A sequence {X,} of random variables is uniformly condition-
ally integrable(UCI) if

Jim sup, {|E(| XA I{IXn| > a}|Fo-1)} = 0,

where I{-} denotes the indicator function of the set in braces.

Definition 2. A sequence {X,} of random variables is uniformly condition-
ally integrable in the Cesaro sence(UCIC) if

lim sup, (- 3" IB(XL 1K) > a}lFe i)} = 0.

k=1
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Clearly, the above condition is implied by UCI. Actually UCIC is strictly
weaker than UCI( see Chandra(1989) Example 2). It is also noted that if { X, }
is a sequence of independent random variables, then {X,} are UCI(UCIC), if
and only if, {X,} are uniformly integrable(uniformly integrable in the Cesaro
sense (see Chandra(1989) and Gut(1992)), respectively). We first consider
the following theorem which generalizes results by Gut(1974, Theorem 2)
and Pyke and Root(1968).

Theorem 1. Let {|X,|?, n > 1} be UCIC for some 0 < p < 2, and let
E(X,|Fn1) =0foralln >1if 1 < p < 2. Let {r(c), ¢ > 0} be a non-
decreasing family of stopping times such that E7(c) < co and E7(c) T o0, as
¢ — 00. Then

E|S, )" = o(ET(c)), as c¢— oo. (2.1)

If moreover, ¢ 'E7(c) — u~!, as ¢ — oo, where p is a positive constant,
then

E|S.(olf =o(c), as c— oo. (2.2)

Proof. The technique is similar to the one used in Chow(1961) and also in
Gut(1974). A slight different situation is that we cannot use Wald’s lemma.
For this the following lemma is stated and proved in Chow, Robbins and
Teicher(1965).

Lemma 1(Chow, Robbins and Teicher). For any stopping time 7 and any
r > 0,
EY |Xil" =E Y E(1Xe|"| Fe-1)-
k=1 k=1
First, let 1 < p < 2. Since E(X,|F.-1) = 0 for all n > 1, {3}, Xi,
n > 1} is a martingale. Define 7,(c) = min{7(c),n}, and define U, =
f Xi-I{r.(c) 24}, k=1,2,---,n. Then also {U;};., is a martingale,
U, = S, (e)» and E|U|P < E|U,? < E|S,|P < oo, since {|U,|P};_, is a sub-
martingale (see Doob(1953), Theorem 2.1). Thus by the Burkholder-Davis
inequalities (see Burkholder(1966), Theorem 9 and Davis(1970), Theorem 1),
there exists a constant C, > 0, depending only on p, such that
7 (€)
E|U.P < C,-E| 3 X"

k=1
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Since lim,_, 0 supa {2 0y |E(|X:PI{|X:]P > a}|Fiz1)||} = 0, there exists,
for every ¢ > 0, an M > 0, such that X7 F(|XPI{|X:]f > M}|Fi_1)
< neforalln > M. Put

X, =X, I{{X,P <M}Yand X, = X, — X

’

n=12"-.

n?

By the C.-inequality(Loeve (1977, p. 157)) and Lemma 1,

7n (€)

Ej Z X =
<
<
<
<

ThUS, ElSTn {c) ]p

lemma,

7 (c)

E| Z (Xo)? + (XD

"o
E| Z(X I”/2+EIZ X, )2
P e
E|ra(c) - M**7" + E Y | X, |7
k=1
7n (€) Y
ME((r.(c))P* + E Z (1X, [?| Fez1)

ME(r () + E S (Hra(e) = i} 3 E(X. P Fo-1)

i=1 k=1

ME((7,(c))*? —I—Ezn:I{Tn(c) =1} -ie
i=1

E(r(c))** + eE7(c). (2.3)

< C, - ME(r(c))”’* + C,¢ - ET(c) < o0, and by Fatou’s

E|S; o <C, - M-E(r(c))”*+C, ¢ - Et(c) < 0.
(c) P P

Therefore E|S,,)|” = o(E7(c)) as ¢ — oco. Now, let 0 < p < 1. By
applying the C,—inequality and Lemma 1 as above we obtain

T ()

E[S. ol = ElZXklp

Tn (c T (€)

E|2X|P+E|Z(X)l"/2

Tn (c)
ME(1.(c))’ + E Y E(IX, IP|Fk-1)
k=1

IA

IA
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< ME(1(c))? + €E7(c),
and hence, by Fatou’s lemma,
EIS, o <M - E(r(9) + eBr(c) < oo,

This proves (2.1), from which the proof (2.2) is immediate.
The following result generalizes Theorem 1 of Gut(1974).

Theorem 2. Let {|X.|?,n > 1} be UCI, 1 < p < 2 and let E(|X, —
E(Xn|Fn1)|*|Fac1) < K < oo for some o > 1if p = 1 (if the {X,} are
independent, we assume {X, — EX,} are uniformly integrable for p = 1). If
E(X,|Fn-1) = EXn = pn, and 37 (i — p) = o(n'?),0 < u < 0o then

¢! E|N —¢/ulP -0, as c— oo.

To prove Theorem 2 we begin with the following lemma.

Lemma 2. Let {|X.|?, n > 1} be UCL, p > 1, and let E(| X, — E(Xn|Fa-1)|®
|Fn_1) < K < oo for some o > 1if p =1 (if the {X,} are independent, we
assume {X, — EX,} are uniformly integrable for p = 1). If E(X.|Fa-1) =
EX, = pn and 37 (g — ) = o(n), 0 < u < 00, then

¢ E(Sy —¢)’ >0 as c¢— x.

Proof. First note that if {|X,|?} is UCI, then sup,{||maz{E(|Xn[?|Fn-1),
E(|X, — pnl?|Fa-1)}]} < K for some K < oo and hence EN(c) < oo for
all ¢ > O(see proof of Theorem 1, Chow and Robbins(1963)). Let ¢ > 0 be
an arbitrary small given number and choose M  so large that
supe {|E(| X PI{|Xc]? > €n}|Fe-1)||} < € if n > M. Then we have

EX:, = EXR) =E(X5) XL < eN)+E(XR) I{(X3)" > eN})

N
< EN+EQN (X I{(X]) > ek})
k=1

N
= EN+E(Q (X I{(X]) > ek}) - I{N < eM})
k=1

N
+ B(Q_ (X7 I{(X)" > ek}) - I{N > eM})
k=1
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fen]
eEN +E((Y_ (XY -I{N < eM})
k=1

AN

leM]
+ B (X)) I{N >eM})
k=1

N

+ E((C Y. (XD XN > EMY) - I{N > eM))

k=[eM]+1

leM] N

eEN+EO_ (X +EQ(XHP - 1{(X]}) > &M}
k=1 k=1
leM] N

= €eEN+E( E(XaPIFa-1)) + EQ_ E(XePI{XsP > €M} Fns1))

k=1 k=1
¢eEN +KeM + EN - ¢

= ¢(2EN +KM). (2.4)

IA

The last inequality holds because of the way ¢ and M are chosen and
preceding equality is from Lemma 1.

Thus 0 < EXL,/EN < 2 + eKM/EN, from which it follows that
0 < limsup,,  EXL/EN < 2. Since ¢ was arbitrary, we have
lim, ,,, EXY/EN = 0. And since the assumptions satisfy those of Theorem
1 in Chow and Robbins’ paper(Theorem 2(Chow and Robbins) when {X,}
are independent), EN/c — p~! as ¢ — 00, from which lim,_,, EX%Y/c=0.
Now from ¢ < Sy < ¢+ Xy, it follows that

E(Sw —<f _ EX},

C C

0< — 0 as ¢c— 0.

Lemma 3. If |E(|X,]|*|F.-1)]l € K < oo for some a > 1, then {|X,|,n > 1}
is UCL.

Proof. The elementary inequality
o E(| XA {1 Xn]* > a}|Faot) < E(1Xa)"T{|Xa|* > a}|Facs)

implies that

K

aa—l

sup {| E(| X o I{Xa] > "/ F,_ )]} <
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and since a > 1, the last expression decreases to 0 as a T 0o0.

Proof of Theorem 2. Now, let 1 < p < 2. As in the proof of Lemma 2,
by Theorem 1 and 2(Chow and Robbins), ¢! - EN — p~! as ¢ — 0o. Set
Y, = X, — pn. Then we can easily check that {|Y,|?,n > 1} are UCI by
elementary computation for 1 < p < 2 and by Lemma 3 for p = 1. Applying
Theorem 1, E|Sy — 2N, wl” = E| SN, Y. = o(EN), hence, combining
these, we have

N

L E|Sy =Y wlP -0, as c— oo. (3)
Now, by Minkowski’s inequality,
(E|luN — cP)V? < (E|Sy — uN[P)? + (E|Sy — c?)"/?

N N
< (EISy = S wl)VP + (E| Y wi — uN )P + (E|Sy — c?)"”

i=1 i=1

(2.5)
By (3) and Lemma 2, it suffices to show
N
B (wi—w)P -0 as c— oo0.
o1
Since 37, (us — ) = o(n!/?), for given e > 0, choose ng so that | 37, (4 —
p)|f < ne for all n > ng. Then we have
N N N
BIY (o =l = BN~ )N < ma}” + BI(E = i) HN > mo)l
i=1 i=1 i=1
< IZ( i~ K |”+ZP{N = no + i}| Z
i=1 i=1 =1
< C +¢€EN, (2.6)

where C is an unimportant constant.
Therefore E| N, (u; — p)? = o(c) since lim, ,oo EN/c = p~! and € is
arbitrary.
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