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Abstract

Sums of independent random variables S,, = X;+ X9+ -+ X, are
considered, where the X, are chosen according to a stationary process
of distributions. Given the time t > 0, let N(t) be the number of
indices n for which 0 < S, < t. In this set up we prove that N (t)/t
converges almost surely and in L! as t — 0o, which generalizes classical
renewal theorem.
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1. INTRODUCTION

Let F be a set of distributions on R with the topology of weak convergence,
and let A be the o—field generated by the open sets. We denote by F7° the
space consisting of all infinite sequence (Fy, Fs,---),F, € F and R{® the
space consisting of all infinite sequences (zy,zs,---) of real numbers. Take
the o—field AP to be the smallest o—field of subsets of F{° containing all
finite—dimensional rectangles and take B to be the Borel o-field of F7°.
Let w = (Fy,Fy,---) be the coordinate process in F and v its distribution
on A®. Let 6 be the coordinate shift: 6*(w) = o’ with F*' = F¥ k =
1,2,---. On (R{,B{®) we also define the shift transformation o : RY® —
R by o(z1,z2, ) = (22,23, -). v is called stationary if for every A €

®,v(071(A)) = v(A) and we let 7 be its marginal distribution. Let 7 be
the o—field of invariant sets in AP, that is, 7 = {A4]071(4) = 4,4 € AP} and
let 7 be the o—field of invariant sets in B, that is, 7 = {Bl¢~'(B) = B,B €
B2 }. For each w, define a probability measure P, on (R, B{°) so that P, =
2, F¥. A monotone class argument shows that P,(B),B € B, is AP-
measurable as a function of w. So we can define a new probability measure
such that P(B) = [ P,(B)v(dw). Define the process {X,} on (R, BY) such
that X, (z1,z2, ) = z, and set S, = X1+ X,+---+X,. By the definition of
P,,{X,.} are independent with respect to P, and we also note that {X,} isa
sequence of independent and identically distributed random variables when F
has just one element. The purpose of this paper is to generalize the classical
renewal theorem in this set up.

2. STRONG LAW OF LARGE NUMBERS
In this section we consider some strong law of large numbers.
Lemma 1. Let F = {F|[|z|dF(z) < 00, [2zdF(z) = 0}, and let v be

stationary with [ [ |z|dF (z)7(dF) < oco. Then X, with respect to P satisfies

E[X]l |\_7] =0 a.s..

Proof. By the assumption, E|X;| < co and hence E[X| J] exists. Now let
A € J and let {(X;, X2,---) € B} = A for some B € BY. Then we have

/deP = / X1dP
A {(X174Y21"')€B}
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- / X,dP
(X2, X3, )€ B)

= /(/mldF;’(ml)/BH;ﬁ?de(z,-)) v(dw)
= 0,

the last equality holding because [ zdF(z) = 0 for all F € F. This proves
the lemma.
The following propositions of Hong and Kwon(1993) are needed.

Proposition 1. If v is stationary, then {X,} is a stationary process with
respect to P.

Proposition 2. If v is ergodic, then {X,} is ergodic with respect to P.

Proposition 3. Let A C R be measurable. Then P,(A) =1 for v —a.e. w
if and only if P(A) = 1.

Theorem 1. Let F = {F| [zdF(z) = 0, f|2|dF(z) < o0} and v be station-
ary with [ [|z|dF (z)x(dF) < co. Then

Sy
P{——-0}=1 v-ae w.
n

Proof. The proof follows directly from Proposition 1 and 3, Lemma 1, and
the Birkhoff’s ergodic theorem.
In general we then prove the following theorem.

Theorem 2. Let F = {F| f|z|dF(z) < oo} and let v be stationary with
J [ |z|dF (z)7(dF) < co. Then

PW{%—) E[/xdFl(a:)|I](w)}: 1, v—ae w.

(Ef zdF(2)|T)(w) = E[fzdF¥(z)] = [[2dF(z)n(dF) in case v is
ergodic.)

Proof. Let F{*'(z) = F¥(z + fydF¥ (y)) and note that [ zdF¥'(z) = 0. Let
F' = {Fy'lw € F¢}. Define ¢ : F° — (F)P by ¢(w) = ' = (FY',FY',-- ).
Now let v/ = vo¢~1. Then v/ is stationary(ergodic). Applying Theorem 1 to

Sn
this  probability = measure, P,{— — 0} = P,
n

155



156 Dug Hun Hong

S,.—E,S,

{ — 0} =1, v - ae. w, where E,S, = Y7, [XdP, =

1
r_y JzdF¥ (z). We know ;Ean — E[/ zdFy(z)|T](w), v —a.e. w by the

ergodic theorem. Hence

Pw{i—" — B[ 2dFi@)IT@)} = 1, v-ae. w.

Theorem 3. If v is stationary and ergodic with [ [°_ |2|dF(z) 7(dF) < oo
and [ f5zdF(z)n(dF) = oo, then

Sn
P{— — o} =1, v—ae w.
n

Proof. By Proposition 1 and 2, {X,} is stationary and ergodic process
with respect to P such that [ X{dP = oo and [ X{dP < co. Then using

truncatoin and the ergodic theorem we have — — oo a.s. with respect to
n

Sn
P. Hence by Proposition 3, P,{— — 00} =1, v-ae. w.
n

3. RENEWAL THEORY

An interesting application of the law of large numbers occurs in renewal
theory.  We shall assume in this section that for every F € F,
F(0-) =0, ie, P,{X. < 0} = 0 for all w and for all n. We also as-
sume that #{F|F(0) = 1} # 1 in order that exclude the trivial case. Let us
consider the following question. Given the time ¢t > 0, let N (¢t) be the number
of renewals up to and including the time ¢, that is formally,

N (t) = the number of indices n for which 0 < S, <t,
where S, = X; + X2 +---+ X,, n >1. It is clear that we have
{z|N(t,z) = n} = {2|8a(z) <t < Snta(2)}
for n > 0, So = 0 by convention. Summing over n < m — 1, we obtain

{z|N(t,z) < m} = {z|Sn(z) > t}, m=1,2.--.
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The family of r.v.’s {N (¢)} indexed by ¢ € [0,00) may be called a renewal
process. Let us first provide the following proposition.

Proposition 4. For all w, we have
Pw{tlim N(t) =400} =1.
— 00

Proof. Since N(t,z) is non-decreasing with ¢, the limit in (3.3) certainly
exists for all ¢+ and for all w. Since {z|lim;_ o N(t,z) < k for some k} =
{z|Sk(z) > t, for all t} = ¢, the proposition follows.

Theorem 4. Suppose that v is stationary and ergodic, with [ [ |z|dF(z)
n(dF) < 0o and [ fzdF (z)r(dF) = m, then

N(t) 1

P{hm _——}_1 v—ae w
and EN )
IV (2
lim—ﬁz— v —ae w;
t—00 t m

1
both being true even if m = 400, provided we take — to be 0 in that
m
case.

Proof. First we can easily check that P,{N(t,z) = oo for some t < o0}
=0 v-a.e. w by Theorm 2 noting that m > 0. It follows from (3.1) that
forz € RY :

Sne)(2) <t < Sya)+1(z)

and consequently, as soon as t is large enough to make N (¢t,z) > 0,

Sn(te) () < _t Sniz)+1(z) N(t,z) + 1
N(t,z) ~— N(t,z) N(t,z)+1 N(t,z)

Here we need the following lemma.

Lemma 2. Under the conditions of Theorem 4, we have

P, {hm Snts(z)

i N . 2) =m}=1 v—ae w.
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Proof. According to Theorem 2,

S,
PA{lim —=m}=1 v —ae w.
n—oo n

(together with Theorem 3 in case m = +o00). Using (3.3), we conclude that

(i St

A8 N 2) =m}=1 v—ae w.

Now back to the proof of Theorem 4. Letting ¢ — oo and using (3.3) and
(3.6), we conclude that

hence (3.4) is true. The deduction of (3.5) from (3.4) is more tricky than
might have been thought. It is not clear that the Lebesgue dominated con-
vergence theorem is applicable. To get around this difficulty we use an idea
of Chung(1974), but some refinements, due to the fact that we do not have
constant distribution functions, are needed. Since 7 {F|F(0) = 1} < 1, there
exist 6 > 0 and p > 0 such that

m{F|F(6) <1-p} =¢>0.
Denote A = {F| [,,;dF (z) > p}. Define for each w
Py=FxF x-.--,
where

gt — [ PO+ (L=p)do if FY € 4,
S R N if F¥ ¢ A.

Then it is obvious that P, (S, < r) < P,(S, < r) for all r and P,(N(t) <
s) > P, (N(t) < s) for all s,t € R. Here we need another lemma.

())}<E {(N(t)

Proof. By the ergodic theorem

Lemma 3. E,{( )’} =0(1) v—-ae w.

1 n
=D 14(F¥) — = (A), v—ae w.
M =1
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Take some € > 0. On the set of w’s above a fraction (7(A) —€)n of the first
n F¥sarein A for all n > n(w), so S, /6 is larger than a sum of [((A4) — €)n)|
Bernoulh random variables, where |- ]2 stands for integer part of .. Hence by
elementary computations, E, (N (t))° = O(—Q-) as t — oo, which completes
the lemma.

So we have a uniformly integrable family of random variables which con-
verges a.s., hence they converge in L.
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