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Abstract

The problem of testing for a constant mean is considered. A
Kolmogorov-Smirnov type test using the sample Fourier coefficients
is suggested and its asymptotic distribution is derived. A simulation
study shows that the proposed test is more powerful than the cusum
type test when there is more than one change-point or there is a cyclic
change.
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1. INTRODUCTION

Detecting a change in the mean of a stochastic process is of interest in
a number of areas. One of the nonparametric approach in detecting mean
change is using the Fourier series coefficients. While parametric methods
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require very specific quantitative information from the experiment, nonpara-
metric techniques rely more on the data itself. In many function spaces, the
Fourier series coefficients contain information about the underlying function.
Sample Fourier coefficients, computed from regression data can be regarded
as a transformation that contain the information about the data.

Page (1954, 1955) considered testing the null hypothesis that there is
no change with the assumption that the initial mean is known. Wolfe and
Schechtman (1984) discussed several nonparametric methods using ranks or
score function for testing for no change. Csérgé and Horédth (1988) suggested
a Kolmogorov-Smirnov type test based on cumulative sum. Buckley (1991)
proposed a test based on the CUSUM for testing the hypothesis that the
design points have no effect on the response variable. Durbin and Knott
(1972) introduced Fourier analysis of a sample distribution function in the
context of testing lack-of-fit.

In this paper we are concerned with a development of test statistics for
detecting changes especially using Fourier series coeflicients.

2. TESTING FOR A CONSTANT MEAN
Consider the model
y:i = f(z:) + €, i=1,...,n (2.1)

where z; = i/n and ¢;’s are iid with mean zero, variance o? and finite fourth
moments. Of interest is testing the null hypothesis that = has no effect on y,
ie.,

Ho: f(z) =C for all z € [0,1], where C is a constant, (2.2)

against
H, : f(z) is nonconstant.

Under the alternative hypothesis, f is arbitrary. If f(z) is any smooth func-
tion, then f(z) has a Fourier series representation

o0

f(z) =ag+2) ajcos(mjz), 0<z<1, (2.3)

i=1

where a; = f; cos(njz)f(z)dz, j = 0,1,.... The null hypothesis is equivalent
toa; =0,5=1,2,....
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The sample Fourier coefficients using a cosine system are defined by

- 1.2
¢j = gzinOS(ﬂ'jIBi), j:0,l,...,n— 1, (24)
=1

where z; = i/n.

In what follows, we consider the Kolmogorov-Smirnov type test with the
sample Fourier coefficients, since the sample Fourier coefficients contain the
information about the underlying function. If |<;3j| are significantly large, it
would suggest that the test rejects the null hypothesis. Hence, we suggest
the following test statistic with the normalized sample Fourier coefficients

1 k \Y 2n|g{5]|
T,= max - > —5 (2.5)

i=1

where 4,, is a consistent estimator of o.

Remark. If there is any change in the mean process, some l(fbjl have large
values. Let

An = m]a.x lq;J - ¢j0" (2.6)

Including more terms of the sample Fourier coefficients and incorporating the
fact that under Ho, ¢;0 = 0, j = 1,2,..., we can consider the above test
statistic T,.

Theorem 2.1 (Asymptotic distribution of T,)
Assume ¢;’s are iid with mean 0 and variance o2 in (2.1). If f is a constant
function, T,, converges in distribution to

max — > _|Z;], (2.7)

as n — 00, where Z;’s are independently and identically distributed as
N(0,1).

Proof. Let |Z;,| = \/2n|q$j|/o, Jj=1,...,n— 1. Firstly, we will show that
there is a subsequence {m,} such that m, — oo, m, << n and

P(T,>¢)— P(T,, >¢)— 0 fore>0. (2.8)
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Write

P(T,>¢) = P({Tm, > €} UA,)
P(T,, >¢€)+ P(A,) — P({Tn, > €} NA,)

where

1 k
An o {m" +l<k<n— E; Jnl > 6} )

Let j.; be the largest integer such that j2 < m, and j.; is the largest
integer such that j2 < n — 1. Letting j.3 = ja2 if j2, < n — 1, otherwise
Jn3 = jnz — 1. AS can be written as

1
AL = { max ;EIZjnISe}

mp<k<n-—1 i=1
n—1 1 k
= EZ 1Z;n] < €
k=mg +1 ji=1
5 B Bzl e o
i=int #oT2 j* T2

where
j2+i
§n =  max > 1Zul.

<i<(j+1)2-;2
lisGHD* =% S5

By Markov’s inequality,

R LR PES SE R

j=in1 J

since E|Z1n|2 = E(Z2) = 2nE($%)/0? = 1. Since the right side is a part of
a convergent series, the above probability approaches 0 as m, — oo.
By application of Theorem A of Serfling (1970),

log2(2j + 1)\°

E[&?n]s( Tog 2 )(2j+1)- (2.10)
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Therefore
jns J . Jjn3
P(UE%-5) < £r(5-)
j=iny i=1 7 2 i=in1 \
Jjn3 R
< 4 $ log2(2j +1)\" (25 + 1)
€2j =jn1 10g2 j4

as m, — 00.

Now we have P(AS) — 1 as m, — 0o and n — 00, hence (2.8) is estab-
lished.
The second step is to show

,Mmax kZIZJnI  Jax K Z!Z |0, (2.11)

where lim, Z;, = Z; and Z; isiid N(0,1) fori = 1,...,m,.
We apply Theorem 13.3 of Bhattacharya and Ranga Rao (1976) to the
vector (Zin, Zan,--+yZm,n). Let

P(Aﬂ) =P ((Zln1Z2n1"'aZmnn) S Cn)

and
P(A))=P((Z21,22y...,2Zm,) € C,),

n

where C,, is a Borel subset of m, dimensional Euclidean space. The Berry-
Esséen type result of Bhattacharya and Ranga Rao (1976) gives that

sup|P(A,) = P(47)] < a(mn)m E(e1/0)!/ v, (2.12)

where a(m,) is a positive constant that depends only on m,. Since m, can
be chosen to grow sufficiently slowly that m2a(m,)/v/n — 0, we have

|P(A,) — P(A%)] — 0. (2.13)

This fact will be used in the following. Note that

< max
1<k<m,

Ly
=2 25 = 12;])
kal J J

1<k<m k 4 ZIZJ"I - lgclgx _ZIZ |
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IA

Z(lZJﬂ Zjl)

< max |Zk,,—Zk|
1<k<mg,

l<k<m,.

= |Zkon - Zkol—]l" 0

for some kg € {1,...,mn}.

Since Z jnL»Z ; by the central limit approximation and therefore Z;, —
Zj—i>0 which is equivalent to Z;, — Zj—]-’—>0 for j = 1,...,m,, and letting
m,, — oo slowly enough to satisfy (2.13), the proof is complete.

Corollary 2.1 If 6, is a consistent estimator of o, then

»

1 k ¢ d 1 k
l<k<n 1;2 6- ——ql}cl?f(;]zz:llzj

Proof. Note that

LIV) k\/2n|¢;
max nl¢]| . _Z n|¢_7l ) ,\1
1<k<n—1 k On T 1<k<n-1k i1 o On
1 & V2rlesl 1 & V2n|e;
— _z_-—”“”f‘ sy YAl (2 )b
1ksn-1 k] @ kimg o On
J J
Since &, is consistent, it follows that
1 & Vanlgsl »
VO T

Theorem 2.2 (Consistency of the test)
Let ko be the smallest k such that |¢,| > 0. If ¢k0——>¢>ko, then

12‘:: 2n|¢] —1 as n—
1<k<n 1k “ ot Ca

where c, is the a critical value from the asymptotic distribution of T,.
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Proof. For all n > ko,

%i\/ﬂw ii &|¢Jl>_1_\/§5|¢3k0|,

On k0j=1 n _.ko On

1 & v2nlg)| 1 Vonldw|
P<1Sr'?£2(—1;2 Zea) = (ko On )
> P (|én] > kocadn/V2n)

— 1 by the assumption.

3. SIMULATION STUDY

A numerical study was done to determine the critical values and to do
power comparison in various models. The data were generated from the
model

y: = flz) + e
where ¢;’s are iid from N (0,1). Small sample critical values were found by
simulation from the empirical null distribution of the test statistic. We used

1000 sample sets of size 50. For a consistent estimator of the variance, the
following nonparametric estimator was used in the simulation

1 n—1
2 T esm——— . —_—
n 2(7’1 _ 1) §(y1+1 y‘l)

We compare T, with Buckley’s (1992) test

Q>

R b -—?)Q/az,

i=1 \j=1

where Y = ¥, Y;/n. The models considered are:
(i) One change-point model

0, 0<z<05
f(““)"{ﬁ, 05<z<1
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(ii) Two change-points model
0, 0<2<03
fiz)=¢ 8, 03<z<0.7
0, 07<z<1
(iii) Smooth change model
f(z) = cos(rjz), 0<z<1.

Table 3.1 gives the empirical critical values of the test statistics. Table 3.2
shows power comparisons when the alternative model is true. The proposed
test is more powerful unless there is one change-point.

Table 3.1 Empirical Critical Values of T, and Tz
with n = 50 based on 10000 Repetitions

T, Tg
a=0.05 | 29005 0.4679
a =0.10 | 2.4557 0.3643

Table 3.2 Powers of T), and T with n = 50 in 1000 Repetitions

a = 0.05 a=0.10

model T, Ts T, Ts
one change-point (3 = 1.0) | 0.850 0.865 | 0.923 0.928
two change-points (3 = 1.0) | 0.420 0.343 | 0.618 0.503

smooth change (j = 1) 0.993 0.993 | 0.998 0.998
smooth change (j = 3) 0.642 0.431 | 0.835 0.631
smooth change (j = 5) 0.161 0.102 | 0.434 0.208

4. CONCLUSION

The objective of this research is to develop powerful statistical tests to
detect change when the data are independent. Fourier series and Kolmogorov-
Smirnov test idea was used to derive a test statistic. The proof for the
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asymptotic distribution of the test can be extended to other orthogonal bases
and unevenly spaced design points. The power study shows that when there
is only one change-point, the power of the proposed test is as same as that
of Buckley’s cusum type test. But if the shape of change is cyclic or multiple
step function, the proposed test is more powerful than the cusum type test.
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