Structures and components of pulsed DC-plasma-nitrided layers of an austenitic stainless steel

오스테나이트 스테인리스 강의 펄스 직류 플라즈마 질화처리층 조직 및 성분

  • 박정렬 (포항제철(주) 기술연구소) ;
  • 국정한 (한국기술교육대학교 산업기계공학과)
  • Published : 1996.12.01

Abstract

Austenitic stainless steel type 304L has been nitrided under the low pressure of high nitrogen environment for 5 hours by the square-wave-pulse-d.c. plasma as a function of temperature 400~$600^{\circ}C$ and of pulsation. At the temperature range lower than $500^{\circ}C$ and at the relatively high ratio of pulse duration to pulse period, nonstoichiometric stainless steel nitride has been developed in the form of a thin layer which has many cracks. At the temperature range higher than $500^{\circ}C$, with the increasing temperature or with the increasing ratio of the pulse duration to pulse period up to 50s/100s, the nitrided layer was composed mainly of CrN and Fe4N phases and became thick, uniform, columnar and nearly crack-free. The nitrided layer at $500^{\circ}C$ was mixed with the low-temperature layer and the high temperature layer and was very brittle.

오스테나이트 스테인리스강 304L을 고질소 저압 분위기에서 400~$600^{\circ}C$ 범위내의 온도변수 $50^{\circ}$간격차이에 따라 펄스 직류 플라즈마를 발생시켜 펄스작용 시간비에 따라 5시간씩 질화처리를 실시하였다. 처리온도 $500^{\circ}C$를 전후하여 질화처리층의 상과 조직이 현저히 다르게 형성되었다. $500^{\circ}C$미만 범위에서 저온일수록 펄스작용 시간비가 높을 때 질화층은 일종의 비화학량론적인 질화 스테인리스강으로 형성되었고 박피막을 이루며 균열이 많이 발생했다. 처리온도가 $500^{\circ}C$보다 높을 때는 온도가 높아지거나 펄스작용 시간비가 50s/100s로 높아짐에 따라 질화층은 CrN 및 Fe4N 위주로 구성되어 주상정 조직을 이루며 균일하게 성장하며 무균열층이 된다. $500^{\circ}C$에서는 저온 조직 및 상과 고온 조직 및 상이 혼합된 질화층이 형성되며 취성이 대단히 크다.

Keywords

References

  1. Surf. Coat. Technol. v.72 H. Michel;T. Czerwiec;M. Gantois;D. Ablitzer;A. Ricard
  2. IEEE Trans. on Plasma Sci. v.19 B. Eliasson;U. Kogelschatz
  3. Proc. ASM's 2nd Int. Conf. on Ion Nitriding/Carburizing T. Spalvins
  4. Proc. ASM's 2and Int. Conf. on Ion Nitriding/Carburizing K.-T. Rie
  5. Mat. Sci. & Eng. v.A140 Y. Sun;T. bell
  6. Proc. ASM's 1st Int. Conf. on Ion Nitriding R. Grun
  7. Mat. Sci. & Eng. v.A139 K.-T. Rie;J. Wohle
  8. Mat. Sci. & Eng. v.A140 K.-T. Rie;F. Schnatbaum
  9. Mat. Sci. Eng. v.A140 J. Bougdira;G. Henrion;M. Fabry;M. Remy;J. R. Cussenot
  10. Surf. Coat. Technol. v.59 R. Hugon;G. Henrion;M. Fabry
  11. Proc. ASM's 2and Int. Conf. on Ion Nitriding/Carburizing W. L. Kovacs
  12. Proc. ASM's 1st Int. Conf. on Ion Nitriding S. C. Kwon;G. E. Lee;M. C. Yoo
  13. Mat. Sci. Eng. v.A140 R. Grun;H. J Gunther
  14. Proc. ASM's 2nd Int. Conf. on Ion Nitriding/Carburizing W. L. Kovacs
  15. J. Vac. Sci. Technol. v.A3 no.6 T. Spalvins
  16. Heat Treat. Metals A. M. Staines
  17. Surf. Eng. v.9 P. Kuppusami;A. L. E. Terrance;D. Sundararaman;V. S. Raghunathan
  18. Surf. Eng. v.5 J. Flis;J. Mankowski;E. Rolinski
  19. Techn. Report of Kansai University, Japan v.27 K. Ichii;K. Fujimura;T. Takase
  20. Proc. 1st Int. Conf. on Plasma Surf. Eng. P. A. Dearnley A. Namvar;G. G. A. Hibberd;T. bell
  21. Surf. Coat. Technol. v.51 M. E. Chabica;D. L. Williamson;R. Wei;P. J. Wilbur
  22. Surf. Coat. Technol. v.59 M. samandi;B. A. Shedden;D. I. Smith;G. A. Collins;R. Hutchings;J. Tendys
  23. Surf. Coat. Technol. v.71 X. Li;M. Samandi;D. Dunne;R. Hutchings
  24. Surf. Coat. Technol. v.65 F. Bodart;Th. Briglia;C. Quaeyhaegens;J. D'Haen;L. M. Stals
  25. Mat. Sci. Eng. v.A140 A. Saker;Ch. Leroy;H. Michel;C. Frantz
  26. Surf. Coat. Technol. v.63 Leyland;P. R. Stevenson;A. Matthews;D. B. Lewis
  27. 한국열처리공학회지 v.8 no.4 박정렬
  28. Thermochemical Properties of Inorganic Substances-Supplement I. Barin;O. Kancke
  29. Ph. D. dissertation, Technical University of Brawnschweig T. Lampe