Electronic Structure of Pd(111) using Angle-Resolved Phothemission Spectroscopy

각분해 광전자 분광법을 이용한 Pd(111)의 전자구조 연구

  • Published : 1996.03.01

Abstract

We have investigated atomic and electronic structures of a clean Pd(111) surface using low energy electron diffraction (LEED) and angle-resolved photoemission spectroscopy (ARPES). A typical clean LEED pattern with a 3-fold symmetry has been observed, corresponding to that for an fcc (111) surface. ARPES measurements have been performed along the $\Gamma-M,\Gamma-K,\Gamma-M$TEX> symmetry lines, from which the experimental band structure of Pd(111) has been determined. The experimental band structure and work function of Pd(111) surface are found to agree well with the calculated band structure of bulk Pd and the calculated work function of Pd(111), respectively. However, the peak positions in the experimental band structure are located closer to the Fermi level than in the theoretical band structure by 0.1~0.8 eV, depending on the $\kappa$-points in the Brillouin zone. In additin, the experimental band widths are narrower than the theoretical band widths by about 0.5eV. The effects of the localized surface Pd 4d states and the Coulomb interaction between Pd 4d bulk electrons have been discussed as possible origins of such discrepancies between experiment and theory.

Keywords

References

  1. Phys. Rev. v.B21 T.-C. Chiang;J. A. Knapp;M. Aono;D. E. Eastman
  2. Adv. Chem. Phys. v.49 E. W. Plummer;W. Eberhardt
  3. Proc. Roy. Soc.(London) v.A212 F. E. Hoare;J. C. Matthews
  4. Proc. Roy. Soc. (London) v.A240 F. E. Hoare;B. Yates
  5. Chem. Phys. Lett. v.62 R. J. Madrix;G. Ertl;K. Chrsitmann
  6. Hyerogen in Metals, Topics in Applied Physics v.28;29 R. J. Madrix;G. Ertl;K. Christmann;G. Alefeld(ed.);J. Volkl(ed.)
  7. Phys. Rev. v.B3 L. R. Windmiller;J. B. Ketterson;S. Hoemfeldt
  8. Phys. Rev. v.B18 F. J. Himpsel;D. E. Eastman
  9. Phys. Rev. v.B24 P. O. Nilsson;C. G. Larsson;W. Eberhardt
  10. Phys. Rev. v.B29 R. Hora;M. Scheffler
  11. Surf. Sci. v.231 K. Yagi;K. Higashiyama;S. Yamazaki;H. Yanashima;H. Ohnuki;H. Fukutani;H. Kato
  12. Phys. Rev. v.B1 F. M. Mueller;A. J. Freeman;J. O. Dimmock;A. M. Furdyna
  13. Phys. Rev. v.B2 O. K. Anderson
  14. Phys. Rev. v.B14 N. E. Charistensen
  15. Phys. Rev. v.B23 A. H. MacDonald;J. M. Daams;S. H. Vosko;D. D. Koelling
  16. Phys. Rev. Lett. v.46 W. Eberhardt;F. Greuter;E. W. Plummer
  17. Appl. Surf. Sci. v.10 R. G. Musket;W. McLean;C. A. Colmenares;D. M. Makowiecki;W. J. Siekhaus
  18. Phys. Rev. v.136 P. Hohenberg;W. Kohn
  19. Phys. Rev. v.140 W. Kohn;L. J. Sham
  20. Phys. Rev. v.B39 C. Woodward;B. I. Min;R. Benedek;J. Garner
  21. Phys. Rev. v.B24 E. Wimmer;H. Krakauer;M. Weinert;A. J. Freeman
  22. J. Magn. Magn. Mater. v.99 R. Wu;C. Li;A. J. Freeman
  23. Phys. Rev. Lett. v.39 C. Guillot;Y. Ballu;J. Paigne;J. Lecante;K. Jain;P. Thiry;R. Pinchaux;Y. Petroff;L. M. Falicov
  24. J. Appl. Phys. v.59 L. C. Davis
  25. Handbook on Physics and Chemistry of Rare Earths v.10 K. A. Gschneidner, Jr.(ed.);L. Eyring(ed.);S. Hufner(ed.)