V%drained Creep Rupture of an Anisotropically Overconsolidated Clay

이방과압밀점토의 비배수크리프파괴

  • 강병희 (정회원, 인하대학교 공과대학 토목공학과) ;
  • 오선호 (정회원, 대우엔지니어링 지반공학부)
  • Published : 1996.12.01

Abstract

The undrained creep tests with isotropically and anisotropically overconsolidated clays were performed to investigate the effects of anisotropic consolidation on the undrained creep rupture behavior. Results of tests showed that the undrained creep rupture behaviors were iuluenced significantly by stress history including overconsolidation ratio and consolidation pressure ratio$(\sigma_{3c}/\sigma_{le})$. That is. the creep strength of clay increases with the increase of both overconsolidation ratio and consolidation pressure ratio. It, therefore, is dangerous to decide the possibility of creep rupture of clay by the isotropically consolidated creep rupture test in the case of the coefficient of earth pressure lower than 1.0. And the creep strength of clay could be obtained by the equation of the upper yield strength suggested by Finn and Shead(1973) irrespective of both overconsolidation ratio and consolidation pressure ratio.

이방압밀이 과압밀점토의 비배수크리프파괴거동에 미치는 영향을 연구하기 위하여 등방 및 이방과압일시킨 점토시료에 대해서 비배수상태에서 크리프시험을 수행하였다. 연구결과 비배수 크리프파괴거동은 점토시료의 응력이력 즉 과압밀비와 압밀응력비$(\sigma_{3c}/\sigma_{le})$의 크기에 의해서 영향을 크게 받는다는 사실이 밝혀졌다. 즉 점토의 크리프강도는 과압밀비와 압밀응력비가 클수록 증가하므로 정지토압계수가 1.0보다 작은 점토지반의 크리프파괴 가능성을 등방압밀크리프피 괴시험에 의해서 판단하는 것은 위험하다. 그리고 점토의 크리프강도는 과압밀비와 압밀응력비의 크기에 관계없이 Finn과 Shead(1973)의 제안식에 의한 상한항복강도로서 구할 수 있었다.

Keywords

References

  1. 한국지반공학회지 v.9 no.4 이방정규압밀점토의 비배수 크리프 파괴 강병희;홍의
  2. Canadian Geotechnical Journal v.11 no.1 Triaxial and Plane Strain Creep Rupture of and Undisturbed Clay Campanella, T.G.;Vaid, Y.P.
  3. Geotechnique v.2 no.3 Effect of Rate of Load on the Strength of Clays at Constant Water Content Casagrande, A.;Wilson, S.D.
  4. Report R73-16 v.2 no.319 Undrained Creep of Atchafalaya Levee Foundation Clays Edgers, L.;Ladd, C.C.;Christian, J.T.
  5. Proc. 8th ICSMFE v.1-1 Creep and Creep Rupture of an Undrained Sensitive Clay Finn, W.D.L.;Shead, D.
  6. Proc. 9th ICSMFE v.2 Stress-deformation and Strength Characteristics Ladd, C.C.(et al.)
  7. Fundamentals of Soil Behavior Mitchell, J.K.
  8. Proc. 5th ICSMFE v.1 Rheological Properties of Clay Murayama, S.;Shibata, T.
  9. Research Series No.1, Univ. of Washington, Soil Engineering Flow and Fracture of Seattle Clays Sherif, M.A.
  10. J. SMFD v.94 no.SM1 General Stress-strain-time Function for Soils Singh, A.;Mitchell, J.K.
  11. Geotechnique v.25 no.2 Creep of a Clay During Shear and its Rheological Model Ter-Stepanian, G.
  12. Proc. 4th ICSMFE v.1 Rheological Processes in frozen Soils and Dense Clays Vialov, S.;Skibitsky, A.