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Higher Order Elements by Delaunay Triangulation
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Abstract

Delaunay triangulation is a very powerful method of mesh generation for its versatility such as hand-
ling complex geometries, element density control, and local /global remeshing capability. The limit of
generating simplex elements(3-node elements in 2-D) only is resolved by adding generation module of
6-node quadratic elements. Since proposed adjacency does not change from 3-node element mesh to
6-node mesh, generation module can utilize the original simplex element generator. Therefore,
versatility of the Delaunay triangulation is preserved. A simple upsetting problem is employed to show
the possibility of the algorithm.

Keywords : delaunay triangulation, adjacency, adaptive f.e.m,, renumbering density control, 6-node

quadratic elements plastic deformation

1. Introduction

As the realm of finite element analysis is broad-
ened, the treatment of mesh(geneation of in-
itial mesh, and remeshing or revision of the

mesh locally as well as globally) is getting
more attention recently. Grid generation was
not considered as one of major concerns in the
development of finite element methods from
the beginning. The task appeared trivial and
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routine process. But it is not so any more. Sol-
ution domain becomes complex, and emerging
numerical methods require versatile treatment
of the mesh, from initial mesh to revison or
remeshing in the course of solution process.
Hence an efficient, automatic, and robust grid
generation tool becomes an essential part of
the finite element analysis.

Finite element approximation gives estim-
ates of a function values at a given set of poin-
ts. Grid generation gives these points, The
points should be able to delineate complex
geometries and boundaries, While the points
should be close enough to represent changes of
function values, they have to be placed apart
from each other to the extent that they ignore
certain details of the function. Each point is
not independent from its neighboring points
since in most cases it is required to provide val:
ues of derivatives as well as function value it-
self. As a result, connectivity is introduced to
form elements which cover whole domain of
the problem. Hence a grid is formulated with
the coordinates of nodes and the connectivity
of the nodes for an element as basic data.

There are a wide variety of mesh generators
each of which has its special attributes over
others. Structured mesh generators such as al-
gebraic Serendipity methods,? algebraic inter-
ger net methods,” elliptic equation methods,

+56 transfinite interpolation methods,”® and

<9, 10}

hyperbolic equation methods give quadril-

ateral meshes while unstructured mesh gen-
erators like Delaunay methods,! ™"
18~20)

advancing

and octree methods?’ gen-

front methods,
erate triangular meshes, In CFD analysis, hy-
brid mesh scheme® is used to represent flow
features efficiently on the boundary layer as
well as off the layer region. No single type

grid generation method is sufficient to address
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the challenges of the current and future applic-
ations. There are strengths and weaknesses in
all approaches. Nonetheless, one can not over-
look some of the most apparent incentives
such as robustness, and automation of the grid
generation method since it will be used for gen-
eration of initial mesh, local adaptive mesh,
and global revision of the mesh. In this regard,
Delaunay triangulation is one of the most ef-
ficient and powerful methods among others.

It has been shown that Delaunay triangula-
tion is very powerful method to generate trian-

1n~17 It is very flexible,

gular finite elements,
adaptive and universal mesh generator in
many respects .

1) It is not restricted by any topology of the
domain geometry

2) The whole domain or any of subdomains
can be meshed by the same generation algor-
ithm.'”

3) The density control is simple and easy by

the spacings of nodes on the bounary'”

In the meantime Delaunay triangulation gen-
erates simplex elements only, i, e. linear trian-
gular elements. One of the main advantages of
FEM over FDM is capability of handling boun-
dary conditions. Linear elements have many
advantages in practice ; it requires not too
many memory spaces, and not too much com-
puting time. Yet linear element is not appro-
priate for a certain class of problems. When it
comes to the problems with complex boundary
geometry, of large deformation, or of incom-
pressibility constraints, it does not suffice in
accomodating the state functions. In this stud-
y we add additional algorithm of generating
6-node quadratic triangular elements for the
completeness of Delaunay triangular mesh gen-
eration method.
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2. Grid Adaptation and Limites of Linear Trian-
gular Elements

Adaptive finite element methods have been
extensively studied and applied to solve var-
ious linear and nonlinear problems.® % In par-
ticular adaptive methods have made successful
implementation in solving linear problems whic-
h describe more or less steady state phenomen-
a. However, they are not quite appropriate for
solving problems defined on varying domains
in time and problems whose nature is essen-
tially unsteady. Many of metal forming analy-
sis deal with large deformation and simulation
of unsteady processes whose domain is also
varying in time. For such a class of problems,
application of adaptive refinement methods
may not be good enough to obtain accurate
simulation results since its adaptive mesh is
strongly influenced by the initial mesh while
the domain is changing significantly. Naturally
adaptive remeshing method draws more atten-
tion, It is certain that the adaptive remeshing
method needs more computing time, and the
adaptive mesh refinement method has much
simpler structure, However after realizing dif-
ficulties involving many nonlinear problems in
which the domain is varying, the advantage of
adaptive remeshing methods have been widely
recognized over the adaptive mesh refinement
methods especially in shape optimization of an
elastic structure and large deformation analy-
sis with the Lagrangian formulation,? ®

We review one of the adaptive remeshing
methods implemented by Yukawa et al.? for
the analysis of metal forming problem. The
strategy of Yukawa is summerized as follow :

1) Develop the initial finite element model,

2) Compute the distribution of an estimate
of the approximation error, and determine the

subdomains by grouping finite elements whose
estimated error is in certain ranges.

3) Extract the necessary geometric infor-
mation of the subdomains defined in the sec-
ond step, and execute automatic mesh gener-
ation for each of the subdomains with differ-
ent mesh density on.

4) Repeat the second and the third steps
until the desired result is obtained.

1.67
1.0

(a) Subdomain (b} Subdoman mesh

Fig1 Adaptive mesh by a subdomain method

Figure 1 shows typical application of the auto-
matic mesh generation method proposed by

Yukawa et al.?®

" A domain is decompsed into
four subdomains, in which different mesh den-
sity is defined by the “average” mesh size,

Implementing boundary conditions with lin-
ear elements can introduce some serious errors
in the finite element approximation of metal
forming problems, To minimize geometric dis-
crepancy the number of elements is increased
in the region. This error will be reduced great-
ly by employing quadratic elements.

As far as the rigid plasticity is concerned,
there are few works using triangular elements
since the 3-node element yields locked solu-
tions due to incompressibility, At least the
4-node quadrilateral element must be applied
to deal with such a model, and there are many
strikingly successful results published using
the 4-or 8 /9-node quadrilateral elements with

AR ZSE MoH M43 1996.12) 143

!



=g2ulo] 7ol gk A {3t a4 A

the selective reduced integration methods.
However, as Babuska et al.”® noted that util-
ization of higher order triangular elements
does not imply the locked solution. This fact
was not clearly stated in any literature related
to finite element methods for (slight) incom-

1.2 have

pressibility, however, Yukawa et a
shown the successful use of the 6-node ele-
ments without using the selective reduced in-
tegration scheme in dealing with incompressib-
ility. The convergence of the approximation is
assured with the rate of convergence O(h?)
where h is element size. Hence when gener-
ation algorithm of 6-node element is added to
Delaunay triangulation technique, ali of the
convenient and useful features of the method
can be utilized.

3. Delaunay Triangulation and Density Control

Density control introduced by Yukawa®
seems too artificial, since it requires several
subdomains to accomodate appropriate el-
ement gradient on the domain, In that regard,
Delaunay triangulation provides natural means
of dealing with varying element density.

General procedures,'™ 2!
ency as additional basic data, for a computer
coding of Delaunay triangulation with desired
density and adaptive remeshing capability are

summarized as follows ;.

i) Generation of boundary nodes : Boundary
nodes are generated by discretizing the lines
delineating domain configuration. The lengths
of the intervals of the boundary nodes provide
control measure of element density. When a
specific density is required on the interior, a
node with required density function value is
inserted at the location.

144 FARZTRS M9 H45(1996. 12)

introducing adjac-

ii) Construction of the boundary triangula-
tion from the boundary nodes obtained in step
i) in such a way that triangles satisfy Delaun-
ay properties,

iii) Locate a position on the interior of the
domain where a new node will be assigned
through location test, space test, and shape
test 220

iv) Collect elements of which circumcircles
contain the new node, and construct an open
block by eliminating those elements.

v) Construct new elements on the block by
connecting lines radially from the new node to
the boundary segments of the block.

vi) Repeat steps iii)-v) until no more posi-
tion is found at the step iii).

The three tests in the step iii) provide ac-
ceptable regularity and density of the ele-
ments. Density function is assumed over the
domain and the idea is implemented by assign-
ing density function values at each and every
point. Let denote density function d(p) for
point p, the lines connected to the node p by
S7, and its the other end points by 7, respectiv-

ely. Then density function is defined as follows:

d(p) = min tlengths of Si s} (1)

For a node to be generated its prospective
density value can be found either by (1) or by
interpolation. Let y be the coordinates of a can-
didate point ¢, j the nodes constructing the el-
ement which contains point ¢ before remesh-
ing, I; the area coordinates of the elements
containing point ¢. respectively. Then the
interpolation dd(q) of density function value is

dd(q) = d; Li{y) where d; = d(j}). (2)

For repeated indices Einstein convention is
assumed from here and after.
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In the initial triangulation(boundary triangul-
ation), all the existing points are on the boun-
dary and their density index values are given
by (1). In the space test for a candidate node
q, if

ddlq) Cad(q) (3)

for a certain factor «, then point g will be
denied as a new node at the location. In (3),
d(q) is evaluated assuming remeshing is done
on the block, and dd(q) is evaluated before
remeshing. In practice a=+/2 appears to be
appropriate for preserving desired element
size,

The three tests used for the criteria to gen-
erate a new node are not enough to provide ac-
ceptable shape regularity, At the end of mesh
generation, a smoothing process is carried out
to regularize the mesh. For global regulariza-
tion we use well known method of barycenter
at each nodal point. The basic formula to rel-
ocate node p at new coordinates z, is as follow,

4]
T, = —
P nAD

(4)

where
n=the number of elements around node p
a/=area of triangle ,A' which is sharing
node p
A=sum of ai around node p
,,Xizcoordinates of areacenter of triangle
ﬂAz.
The quality of improvement is assessed by
the shape quality index Qi defined as follow,

Qi= %lg_ (5)

where
L=maximum side length of the triangle

ﬂékx

f=normalizing factor.

The normalizing factor f assumes the value
of 4/+/3 on the basis that the quality index Qi
of the equillateral triangle be unity.

The implementation of Delaunay triangula-
tion is shown in Figure 2. Comparing to the
subdomain method shown in Figure 1, Delaun-
ay triangulation method has much simpler set-
ting. The only setting is discretization of boun-
dary lines by varying intervals according to
density requiremens of the given problems as
shown in Figure 2(a). The resulting mesh is
shown as Figure 2(b), and we can observe
that the density variation and the size gradi-
ent of the elements are very smooth compar-
ing to the mesh by the subdomain method of

Figure 1.
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(a) Boundary discretization (b) Delaunay mesh

Fig 2 Density control in the Delaunay Tringulation

4. Generation of Six Node Elements

The use of adjacency was newly introduced
to identify remeshing block in the process of

triagulation.'”. Data for adjacency are kept in
array NEXT :

NEXT(I, J) = element number adjacent to

AR TS KoM M4z (1996 120 145

iyl



=2do)7ygol o na fFEas ¥4

I-th side of element ]
NEXT(, J) = 0 if side I of element J is on
the boundary

In addition to saving time of element search,
the array helps construct the block to be rev-
ised through the whole iterative process of
mesh generation. The array NEXT will be
used again effectively in generating 6-node
quadratic triangular mesh from the 3-node
mesh net for identifying element sides to put
mid-nodes and completing connectivities of
6-node elements. The process is similar to that
of adaptive refinement scheme used in the

k.22 First, we construct 3-node

previous wor
triangular mesh net from Delaunay triangula-
tion, after then we modify the 3-node base net
into 6-node element net. There are two possib-
le ways of transformation ;

1) Composition of four 3-node triangular ele-
ments into one 6-node triangular element.,

2) Generation of mid-side nodes in each
3-node triangular element,

In the first method there is certain limits
such that the number of triangles in 3-node
triangular mesh net be the multiples of 4 so
that the entire elements can be transformed to
6-node elsments without any of 3-node ele-
ments left. In the second method there is no
particular constraint involved. Moreover data
for the adjacency array NEXT are identical in
3- and 6-node triangular mesh systems. The
second method is more attractive for use. The
followings are agreed upon in generation of
6-node triangular elements.

- No gradient is allowed between nodes wit-
hin an element, i. e. a mid-side node is located
at the center of each side.

- Mid-side nodes on the domain boundary
are projected exactly on the boundary lines
where as other mid side nodes stay on the orig

2
=
4
0t
10
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inal straight lines,

The algorithm is straightforward with some
ideas introduced in the previous works.” Geo-
metric data of elements are coordinates of nod-
es and their connectivity within elements. Let
the coordinate vector of node % be denoted by
xz(%£). The coordinates of mid node k between
nodes 1 and j are given by

a(p) = Lt (6)

Generation of mid-side node % must be done
one time only for side /7. Scanning every side
of all the elements, the sides on the interior of
the domain appear twice while those on the
boundary appear only once. Double generation
can be avoided by starting generation of mid
side nodes from lower element number with
the use of adjacency array NEXT. On a side of
the element, a mid-side node shall be generat-
ed only if its adjacent element number is great
er than its own element number or if the side
1s on the boundary. The sides on the boundary
are easily identified since their NEXT values
are set by the value of zero. The generation al-
gorithm is stated as follows. Here NX is the
number of nodes, NEL the number of elements
in 3-node base net by Delaunay triangulation
for a given domain. The connectivity is estab-
lished at the same time as mid-node i1s generat-
ed by filling in the array NEXT of existing con
nectivity data with mid-node number.

i) Set NE=1

ii) do I=1, 3

if (NEXT(I,NE))NE) then
NX=NX-+1
compute x(NX) by equation (6)
fill in connectivity of elements NE
and NEXT(I,NE)

elseif (NEXT(I,NE)=0) then
NX=NX-+1
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compute x(NX) by projection on the
boundary
fill in connectivity of element NE
endif
enddo
iii) NE=NE—+1
iv) if (NEPNEL) then
stop
else
goto ii)
endif

From 3-node triangular base mesh net of Fig-

ure 3(a), 6-node triangular mesh of Figure 3
(b) is generated following the algorithm. The
real lines on the boundary should be curved
ones in Figure 3(b). We observe that mid-side
nodes on the boundary are projected on the
exact boundary line and mid-side riodes on the
interior of the domain stay on the straight lin-
es.

(a) 3-node base net (b) 6-node mesh

Fig 3 3-node base net and 6 node element mesh

5. Renumbering

Due to the nature of automatic node gener-
ation scheme in Delaunay triangultion, node
ordering is arbitrary.

The node numbers are assigned in generat-
ing order of the nodes of which generating loc-
ations are not controlable. Inability to control
node numbering results in possibly big a half

bandwidth and tremendous increase of total
band profile of the stiffness matrices. Hence it
is inevitable to employ node renumbering
scheme to reduce the bandwidth for successful
use of the algorithm., When it comes to the el-
ement numbering process, one can not expect
better situation than that of node numbering.
The efficacy of conventional banded matrix sol-
vers is irrelavent with element ordering. But
when the frontal solver is used, ordering of
elements is critical.*” In this study renumber-
ing schemes for nodes and elements are prop-
osed to cope with the problems of uncontroled
arbitrariness of orderings.

5.1 Node Renumbering

Conceptual principle of node numbering is
such that maximum difference of node number-
s in each element over all the elements be min-
imal, Let the mesh of initial numbering system
be denoted by T, the element of number j by
Ej, the number of nodes by NX, and the num-
ber of elements by NEL, respectively, We also
define several concepts which will be used in
subsequent discussions,

- Nodes s and t are members of the nodes in
generating 7.

- A node s i1s considered a neighbor of node
¢t if nodes s and ¢ are used in constructing an
element of 77,.

- Degree of node is the number of elements
in the collection of neighbors of node ¢ and den
oted by dgr(t).

Neighbors of nodes ¢ constitute members of
neighbor level 1, denoted by Ni(#). The num-
ber of members in N(¢) equals to dgrit). N
(#) is nodal version of adjacent element array
NEXT used in generating Delaunay triangula-
tion,

HMARIT BS KoH M45(1996 120 147
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- Neighbors of nodes in N(#) constitute
members of the neighbor level 2 of node t den-
oted by Ny(#). The nodes of N(t) are excluded
from Ny(¢), so are for the case of arbitrary
neighbor level N,(¢#). That is to say that no
node appears twice in the list of N,(#) for any
level k.

- Nodes in the union of all the neighbor lev-
els are called descendants of node . Those are
virtually all the nodes constituting the whole
meshes except node r itself and the union is
denoted by IX¢).

- Depth p or p(¢) of the descendants of
node ¢ is the largest level value of neighbor
level £ constituting the descendants, 1. e.

p
DXt) = U Ni(t) (7)

k=1

Some of the concepts above are depicted in
Figure 4. Following is schematic algorithm to
achieve optimum node numbering for reducing
total matrix profile as well as half bandwidth.
This will be done in two steps, firstly finding
the starting node of sequential numbering and
secondly assigning new numbers to old nodes.

n =1
Fs)

Fig 4 Equi-depth lines of neighbor level Nk(s)

148 FARZES MO M4(1996 12)

(1) Determine the starting node to begin seq-
uential numbering.

Now we are going to take a node s on the
domain boundary to construct its neighbor lev-
el system N,(s) and to examine the depth p(s)
of its descendants IXs). The direction from
lower neighbor levels to higher ones is con-
sidered as the longitudinal direction of the
mesh system. Long longitude means narrow lat
itude for a given domain of mesh. Then maxi-
mal depth p(s) of the node s provides the max
imum number of members in neighbor level
N,(s) to be minimal, which is desired situation
The following steps are the algorithm to find a
starting node of new numbering,

i) Among the nodes on the boundary del-
ineating the domain, find a node s such that
dgr(s) is minimal,

ii) Construct its neighbor level N,(s) for
k=1 to p(s) and its descendants D(s).

iii) Set CHECK(s)=N,(s).

iv) Find a node t in CHECK(s) of which
dgr(t) is minimal and construct D(t) and get
p(t).

v) Test while CHECK (s) is not empty.

{if p(t) > p(s) then
let s=t
p(s)=p(t)
Nk(S)sz(t), k=1,...,p
goto iii)
else
exclude node t from CHECK(s)
goto iv)
endif}
The result of the present process gives twc
nodes s and ¢ of extreme locations on the boun
dary of the domain as seen in Figure 4. The
two nodes constitute pseudo-diameter encom-
passing the meshed physical domain and node
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¢t is found to be a member of the last neighbor
level N,(s) in the descendants IXs) and its

dgr(t) is minimal on N,(s).

(2) Assign new node numbers

After constructing descendant levels from
the both ends, nodes s and t. of pseudo-diam-
eter, the equi-depth lines of neighbor level N,
(s) and N,(¢) to which each and every node
belongs are drawn. The over all algorithms are
summarized as follow. We define new node
number array NEW(r) for old node number »
and set new node number n as

NEW(r) = n

i) If dgr(s) < dgr(t) then exchange the role
of the nodes s and t, hence

N,_#1(s) = Ny(t) fori=1top
ii) Set n = 1 for node s then
NEW(s) =1
No(s) = s
iii) For k=0to p—1
iii-1) Find the lowest new node number u
in the neighbor level Nk(s) one lev-
el lower than the level N+, (s) of
which nodes are not renumbered
yet.
i11-2) Construct utility set B such that
B = {veN(u) NNy (s)}
ii1-3) Do while B is not empty.
{Find node w of minimal dgr{w) in B.

n=n-+1

NEW(w) = n

B=B — w}
End of loop.

When the loop is finished, the value of # cqual
s to NX.

5.2 Element Numbering

When frontal method is used, assembling

equations and elinminating variables are exec-
uted at the same time. As the solution front
advances static condensation is carried out
whenever possible, Hence it is desirable that
element numbers be assigned in such a way
that the solution front isolates variables(nod-
es) more frequently. Since new node numbers
are so labeled in a sense, we let the element
ordering scheme run parallel to the node order-
ing.

We define new element number array
NEWE(j) for old element number E and set
new element number num as

NEWE(j) = num,

1) num = 0

i) Set NEWE(i) =0 foralli

i) For I = 1 to NX

Do while there is E;€ T, such that I€E;
{if NEWE(j ) = 0 then
num = num + 1
NEWE( j ) = num
else
Ej is already checked and assigned
new element number end if}
End of loop
When the loop is finished, the value of num
equals to NEL.

5.3 Renumbering Examples

The present algorithm is very efficient in
reducing the profile of a system of matrices.
To illustrate the performance of the method
we show several examples. The total profile is
the sum of each column height from the diag-
onal of a symmetric stiffness matrix. and the
average pro-file is the quotient of the total prof
ile by the number of the columns. The half
bandwidth is the maximum column height of
the matrix. Table 1 shows the result of the

MARZTZS Mo Has(96 12 149
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examples for 3-node triangular meshes. Here
mesh 1 is the mesh of Figure 1, mesh 2 that of
Figure 5(a), mesh 3 that of Figure 5(b), and
mesh 4 that of Figure 5(c), respectively. The
half bandwidth is reduced by 1/8 to 1/11 of
those of before renumbering. Rest of the val-
ues also are reduced significantly.

Table 1 |Initial profiles and final profiles of 3-node
mesh example
mesh 1 2 3 4
elements 381 187 377 449
nodes 219 118 217 267

total profile-old | 56071 17943 | 60436 | 94485
average profile 49,06 31.48 53.46 70.15

half bandwidth 215 117 197 250
total profile-new | 15481 3593 10707 12853
average profile 13.54 6.4 9.47 9.54
half bandwidth 30 12 20 21

The result of renumbering for 6-node mesh
is examined for the same domain of Figure 5
(b). Total number of elements of 96 with 225
nodes are used for 6-node triangular mesh
system. Initially the total profile of 108189, the
average profile of 73. 60, and the half bandwid-
th of 208 are reduced to 18991, 12. 92 and 39,
respectively, The reduction ratio of half ban-
dwidth for 6-node mesh is approximately half
of that of 3-node mesh.

6. Implemetation of Quadratic Triangular Ele-
ments in Metal Formimg

When metal deforms plastically during the
manufacturing process, the shape of its bound-
ary changes continuosly, Such deformation
often concentrates locally at sharp corners or
rapid shape transition regions of dies. Thus in
order to simulate the metal forming process
one needs a proper algorithm having a rem-
eshing capability locally as well as globally.
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Fig 5 Node renumbering test examplies

Many studies of simulating metal-forming
have been concerned and tried to develop met-
hods such as various rezoning techiniques to
rediscretize the domain when the mesh system
1s deformed(mostly locally) too much to con-
tinue the simulation. Delaunayi algorithm pres-
ented in this paper executes nicely in such a
practice,
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Following is the descriptions of the mech-
anics of plastic deformation for rigid-plastic

materials from the work of Kobayashi et al.*’ ;

o . P
Equilibrium equations : —a—dl =0 (8a)
Zj
. o _ 3,
Yield criterion : - = \/7(@ G',‘j)&
(8b)
Constitutive equations : € ; = ; 2 ¢’y
where — = (& & )& (8c)
€ Y ()
- " . 2u; 2u;
Compatibility conditions &; =1 (2, 24
2 x; 2x;

(8d)

where o; Cauchy stress tensors, g; strain-rat-
e tensors, #; velocity component, respectively.
Barred simbol stands for effective stress and
effective strain-rate of plastic deformation,
and primed simbol is the deviatoric parts of
stress and strain rate tensors. Again following
the finite element formulation from the work
of Kobayashi et al.*’, a simple upsetting of cir-
cular cylinder in Figure 6 was simulated.
During upsetting the material on the inteface
of the upper die flows upwards and finally fol-
ds over at step 23, which causes further sim-
ulation of upsetting to fail since the element at
the corner, distorted too much, has the neg-
ative Jacobian. Using Delaunay algorithm, rem-
eshing can be performed at the step so that
the simulation could continue beyond the fail-
ed step. Figure 7 is the original mesh and Fig-
ure 8 shows the sequence of plastic defor-
mation which will occur similarly during form-
ing process of the metallic material, Severe
deformation of the upper right hand corner of
the cylinder is nicely represented by six node
triangular elements,

Dimensions :h =1, andr =1,
Die speed : v = (.1

Friction factor : m = 0.5

Flow stress : 10.0((,:;)0'1

Total reduction in height : 40%

Incremental step size : 2%

Number of nodes in the initial mesh system = 85
Number of elements in the initial mesh system = 34

L L L 2 7

Fig 7 Original mesh of the upsetting problem

The analysis program used in this study was
not capable of transferring data of various stat-
e variables for restart analysis, This prevents
us from performing remeshing procedure whic-
h is an essential part in observing continued
deformation of forming process. Remeshing
after 20th step with 6-node triangular elements
by Delaunay triangulation is shown in Figure 9.
Firstly 3-node triangular mesh is generated,
then 6-node triangular mesh is regenerated bas-

bl
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Fig 8 Sequence of plastic deformation of example problem

ed on the 3-node element mesh. The sequence
is shown in Figure 10(a) and (b) enlarged loc-
ally at the right upper corner of the body.
Smooth boundary fitting is observed by higher
order triangular elements

7. Conclusion

The adaptive ability and boundary approx-
imation of Delaunay triangulation is greatly
enhanced by adding generation algorithm of
6-node triangular elements, Thus simulating
the problems of large deformation with severe
local distortion and varying boundary and var-
ying domain can be carried out not causing any
biased mesh environment. The felxibility of
the Delaunay method is so effectve that the
argument over preference on the options be-
tween adaptive refinement and adaptive rem-
eshing methods be insignificant. Delaunay

152 HMFZES HigH M45(199. 12)
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triangulation does not differentiate the adapt-
1ve refinement and the adaptive remeshing but
encompasses all the processes of them at the
same time, One weakness of generating low
order element is resolved by adding a module
for 6-node triangular elements. The other one
of causing large a half bandwidth of stiffness
matrix is also resolved by providing renumber-
ing algorithm of node and element ordering.
The extension to 3-dimensional problems shoul-
d not be too difficult.

Fig 9 Remeshing for restart
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(a) 3-node base net

(b) 6-node mesh

Fig 10 Boundary fitting by 6-node elements
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